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EXECUTIVE SUMMARY

1. GENERAL STRATEGY

The overall program embraces property profiles, manufacturing. design
and sensor development (Fig. 1) consistent with a concurrent engineering
philosophy. For this purpose, the program has created networks with the
other composites activities. Manufacturing research on MMCs is strongly
coupled with the 3M Model Factory and with the DARPA consolidation team.
Major links with Corning and SEP are being established for CMC
manufacturing. Design Team activities are coordinated by exchange visits, in
February/March, to Pratt and Whitney, General Electric, McDonnell
Douglas and Corning. Other visits and exchanges are being discussed.
These visits serve both as a critique of the research plan and as a means of
disseminating the knowledge acquired in 1992.

The program strategy concerned with design attempts to provide a
balance of effort between properties and design by having studies of
mechanisms and property profiles, which intersect with a focused activity
devoted to design problems (Fig. 2). The latter includes two foci, one on
MMCs and one on CMCs. Each focus reflects differences in the property
emphases required for design. The intersections with the mechanism
studies ensure that commonalties in behavior continue to be identified. and

also facilitate the efficient transfer of models between MMCs and CMCs.




Experimental
Mechanics
Processing Constitutive |
Science Laws 1
Micromechanics
Coating
Concepts

PROPERTY
PROFILES

MANUFACTURING Computation SENSORS

SUB-ELEMENT
ANALYSIS

|

DESIGN
TEAMS

Fig. 1 The Concurrent Engineering Approach

Evans URF2/92)amk-04181001-2




DESIGN TEAMS |

v

e
2]
L
=l
W
o
@
Q.
o
E Tensile
43 Strength
. o
| 8
oo Constitutive
Laws
Processing
Sensors
MMC L.lfet CMC
Design Predictions Design
Leckie Evans
Levi Clarke
McMeeking Lange
Zok Kedward
Suo
Fig. 2

Evane URK>-amk-04121001- 1

Matrix Structure of Program

McMeeking

Zok

Evans

Leckie

Levi

Clarke

A

Cc

D

E

F




2. PROPERTY PROFILES

Each research activity concerned with properties begins with
experiments that identify the principal property-controlling phenomena.
Models are then developed that relate the physical response to constituent
properties. These models, when validated, provide the constitutive laws
required for calculating stress redistribution, failure and damage
progression. They also provide a solid physics and mechanics
understanding, which can be used to judge the effectiveness of the

simplified procedures needed for design purposes.
2.1 Fatigue

Studies of the propagation of dominant mode I fatigue cracks from
notches in MMCs, including the role of fiber bridging and fiber failure, have
been comprehensively addressed (Zok, McMeeking). Software programs that
include these effects have been developed. These are being transferred to
Pratt and Whitney and KAMAN Sciences. The effects of thermal cycling on
crack growth in MMCs have also been modelled (McMeeking). The results
highlight the opposing effects of cycling on matrix crack growth and fiber
failure (the fatigue threshold), when thermal cycles are superposed onto load
cycles. Notably, matrix crack growth is enhanced by out-of-phase
thermomechanical cycling, but fiber failure is suppressed (and vice versa for
in-phase cycling). Experimental studies that examine these predictions are
planned (Zok).

Studies have also been conducted on systems that exhibit multiple

matrix cracking (Zok). The tensile stress-strain behavior of composites

containing such cracks is analogous to the behavior of unidirectional CMCs




under monotonic tensile loading. As a result, models developed to describe
the tensile response of the CMCs have found utility in describing the MMCs.
However, two important differences in the two classes of composite have
been identified and are presently being addressed. The first deals with the
nature of the crack patterns. In the CMCs, the cracks are more or less
uniformly spaced and generally span across the entire compaosite section. In
contrast, the MMCs exhibit a broader distribution of crack sizes, many of
which are short compared with the specimen dimensions. Methodologies for
measurement and interpretation of crack densities in MMCs are being
developed. The second problem deals with degradation in the interfacial
sliding properties with cyclic sliding in the MMCs. Such degradation is
presently being studied using fiber push-out tests in fatigued specimens.
Thermal fatigue studies on MMCs subject to transverse loading have
been performed and have established the conditions that allow shakedown
(Leckie). The shakedown range is found to be strongly influenced by the
extent of matrix creep, which defines a temperature limitation on the use of
the material. The eventual outcome of this activity would be the
specification of parameters that ensure shakedown and avoid ratcheting.
The next challenge for MMCs concern the quantification of transitions
in fatigue behavior, especially those found at higher temperatures. These
include multiple matrix cracking and shear band formation. Experimental
studies are in progress which will be used to establish a mechanism map.
The map, when developed. would explicitly identify the transitions (Zok). The
analogous behavior found in CMCs will facilitate this development. Other
high temperature phenomena to be explored include changes in the
interfacial sliding behavior due to both relaxations in the thermal residual

stresses and the growth of reaction products near the fiber-matrix interface.




Fatigue damage studies on 2-D CMCs will focus on interface and fiber
degradation phenomena, especially at elevated temperatures {(Evans, Zok).
Cvclic loading into the stress range at which matrix cracks exist is known to
modify the interface sliding stress and may weaken the fibers. These
degradation effects can be distinguished. because they change the
hysteresis loop and reduce the UTS, respectively. Experiments that probe
these material responses are planned. In addition, models that include the
influence ! cyclic fiber failure and pull-out on fatigue damage will be

developed (Suo).
2.2 Matrix Cracking

Models of the plastic strain and modulus changes caused by various
modes of matrix cracking have been developed. These solutions have
provided a rationale for experimental studies on the tensile and shear
behavior of CMCs and on the fatigue of MMCs (Hutchinson, Zok. Evans,
Suo, Budiansky, McMeeking). The information has been used in two distinct
wav-. (i) Test methodologies have been devised that relate
stre¢>s/displacement measurements to constituent properties (Table 1).
(ii} Stress/strain curves and matrix crack evolution have been simulated for
specific combinations of constituent properties.

The development of the procedures and their implementation are still in
progress. Independent solutions have been established for matrix cracks in
0° plies and 90° plies upon tensile loading. The former has been
experimentally validated on 1-D materiais (SiC/SiC and SiC/CAS]).
Measurements of plastic strain, hysteresis loops and crack densities have

been checked against the models for consistency.




TABLE 1

Relevant Constituent Properties and Measurement Methods

CONSTITUENT PROPERTY MEASUREMENT

* Pull-Out Length, h

* Saturation Crack Spacing, 1
Sliding Stress, 1T
= Hysteresis Loop. O € 1/2

* Unloading Modulus, Ep

* Fracture Mirrors
Characteristic Strength, S¢, m
¢ Ultimate Strength, S

* Bilayer Distortion
Misfit Strain, 2 (q) * Permanent Strain, €p

¢ Residual Crack Opening

* Monolithic Material

Matrix Fracture Energy. I'm  Saturation Crack Spacing. 1g

e Matrix Cracking Stress, Omc

* Permanent Strain. €p
Debond Energy, I'y
* Residual Crack Opening




The next challenge is to couple the models together in order to simulate
the evolution of matrix cracks in 2-D materials, subject to tensile loading
(Hutchinson, Budiansky). Related effects on the ultimate tensile strength
caused by stress concentrations in the fibers in the presence of matrix
cracks. would also be evaluated. Experimental measurements of
stress/strain behavior in 2-D CMCs, with concurrent observations of matrix
crack evolution, would be used to guide and validate such models (Evans.

Kedward).
2.3 Constitutive Equations

Constitutive equations provide the link between material behavior at
the meso-scale and the performance of engineering components. The
equations can be established from the results of uniaxial and transverse
tensile tests together with in-plane shear loading. For a complete
formulation, which describes accurately the growth of failure mechanisms
and the conditions of failure at the meso-scale, it is also necessary to
perform calculations which are valid at the micro-scale.

These procedures have been compieted for metal-matrix composites
(Jansson, Leckie), and the resulting constitutive equations are operational
in the ABAQUS finite element code. The behavior of simple panels
penetrated by circular holes have been studied and the results await
comparison with experiments which are planned for the coming year. The
constitutive equations are formulated in terms of state variables which
include the hardenring tensors and damage state variables which describe
debonding at the interface and void growth in the matrix. The format is
sufficiently general to allow the inclusion of failure mechanisms such as

environmental attack as the appropriate understanding is available. For




example, the effect of matrix and fiber creep mechanisms (Aravas) have also
been introduced into ABAQUS, and it is proposed to extend the creep
conditions to include the effects of variable loading and temperature.

A similar approach has been taken towards the modulus of CMCs. In
this case, efforts have been made to include the influence of matrix
cracking, in-plane shearing and fiber breakage. The latter consideration is
based on the global load sharing model (Hayhurst). The equations are also
available in ABAQUS. At present, matrix cracking is introduced by
assuming a matrix stress accompanied by an increase of strain. However.
based on the more recent understanding of the growth of matrix cracks
(above) it is intended to introduce these mechanisms into the constitutive

equations for CMCs.
2.4 Creep

The emphases of the creep investigations have been on the anisotropic
characteristics of unidirectional layers in which the fibers are elastic, but
the matrix creeps. Experiments and models of the longitudinal creep
properties of such materials »1ve been initiated (McMeeking, Leckie, Evans,
Zok, Aravas). The critical issues in this orientation concern the incidence of
fiber failure and the subsequent sliding response of the interface. A
modelling effort has established an approach that allows the stochastic
evolution of fiber failure to occur as stress is transferred onto the fibers by
matrix creep (McMeeking). This approach leads to creep rates with a large
power law exponent. Various attempts are underway to incorporate the
interface sliding initiated by fiber breaks and to introduce sliding into the
creep rate formulation. Experiments being performed on unidirectional Ti

matrix materials are examining the incidence of fiber failures on the creep
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deformation (Evans. Leckie, Zok). These results will guide the modelling
effort concerned with interface sliding effects. Insight will also be gained
about fiber failure stochastics during creep, especially differences from room
temperature behavior.

The transverse creep properties are expected to have direct analogies
with composite deformation for a power law hardening matrix (Section 2.3).
In particular, the same effects of debonding and matrix damages arise and
can be incorporated in an equivalent manner {Leckie, Aravas). Testing is
being performed on Ti MMCs and on SiC/CAS to validate the models.

Experiments on Ti-matrix 0°/90° cross-ply composites are planned.
Creep models appropriate to cross-ply materials will be developed byv
combining those corresponding to the unidirectional materials in the
longitudinal and transverse orientations, using a rule-of-mixtures approach.
Such an approach is expected to be adequate for loadings in which the
principal stresses coincide with the fiber axes. Alternate approaches will be
soucht to describe the material response in other orientations.

some CMCs contain fibers that creep more extensively than the matrix.
This creep deformation has been found to elevate the stress in the matrix
and cause time dependent evolution of matrix cracks. This coupled process
results in continuous creep deformation with relatively low creep ductility.
Experiments on such materials are continuing (Evans, Leckie} and a
modelling effort will be initiated (Suo). The models would include load
transfer into the matrix by creeping fibers, with sliding interfaces, leading to

enhanced matrix cracking.
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i Tensile Strength

The ultimate strength (UTS) of both CMCs and MMCs (as well as fatigue
and creep thresholds) is dominated by fiber failure. With the global load
sharing (GLS) concept of fiber failure now well established. the recent
emphasis has been on defining the constituent properties needed to ensure
GLS. The approach has been to perform local load sharing calculations and
then compare experimental UTS data with the GLS predictions {Curtin,
Evans, Leckie). The situation is unresolved. However, initial calculations on
CMCs (Curtin) and MMCs (Evans) have provided some insight. Two key
remaining issues concern the magnitude of the stress concentration in
intact fibers caused by matrix cracks and the role of fiber pull-out in
alleviating those stresses. Calculations of these effects are planned
(Budiansky, Suo).

Degradation of the fiber strength upon either high temperature (creep)
testing, atmospheric exposure, or fatigue are other topics of interest.
Rupture testing performed under these conditions will be assessed in terms

of degradation in fiber properties.

3. DESIGN TEAMS
3.1 The Approach

The overall philosophy of the design effort is to eventually combine
material models, with a materials selector, and a data base, within a unified
software package (Prinz). One example of a composites data base is that
developed for MMCs by KAMAN Sciences, which forms the basis for a

potential collaboration. The materials selector has already been developed
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for monolithic materials {Ashby) and is available for purchase. This selector
requires expansion to incorporate phenomena that have special significance
for high temperature composites, including creep and thermal fatigue. These
new features will be developed and included in the advanced selector
software (Ashby]).

The modelling approach is illustrated in Table II. Failure mechanisms
and their effect on material behavior have been introduced into constitutive
equations. The stress, strain and damage fields which develop in
components during the cycles of loading and temperature can then be
computed. Experiments shall be performed on simple components such as
holes in plates, and comparison made with the computational predictions.
Since constitutive equations are modeled using the results of coupon tests,
it is likely that additional failure modes shall come to light during
component testing. These mechanisms shall be studied and the appropriate
mechanics developed so that their influence is correctly factored into the
constitutive equations. In this way, increased confidence in the reliability of
the constitutive equations can be established in a systematic way.

In practice, it is most probable that the constitutive equations are too
complex for application at the creative level of the design process. It is then
that simple but reliable procedures are of greater use. Some success has
been achieved in this regard for MMCs subjected to cyclic mechanical and
thermal loading (Jansson, Ponter, Leckie), as well as for strength
calculations of CMC panels penetrated by holes (Suo) and the fatigue of
MMCs (Zok, McMeeking). In all cases simplifications are introduced after a
complete and reliable analysis has been completed which provides a

standard against which the effects of simplification can be assessed.
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3.2 Ceramic Matrix Composite Design

The design effort on CMCs will have its major focus on pin-loaded holes
used for attachments (Fig. 3). A smaller activity, expected to expand in
1994, will address delamination cracking. The hole design includes several
related topics. Each topic is concerned with aspects of constitutive law
development (Table III), highlighted during the study group. Combined
experimental and modelling efforts on the tensile properties of CMCs have
established that the plastic strains are dominated by matrix cracks in the O°
plies. The matrix cracking models developed in the program demonstrate
that these strains are governed by four indepeqdent constituent properties
[(Table 1) 1, T4, 2 and I'm] which combine and interrelate through five non-
dimensional parameters (Table IV). This modelling background suggests a
concept for using model-based knowledge to develop constitutive laws. The
following steps are involved (Table III). (i) A model-based methodology for
inferring the constituent properties of unidirectional CMCs from
macroscopic stress/strain behavior has been devised and is being
experimentally tested on a range of materials (Evans). (ii) Upon validation,
the models would allow stress/strain curves to be simulated (Hutchinson).
This capability would facilitate a sensitivity study to be performed, in order
to determine the minimum number of independent parameters that
adequately represent the constitutive law. A strictly empirical law would
require 3 parameters (yield strength, hardening rate and unloading
modulus). Consequently, the objective might be to seek 3 combinations of
the 4 constituent properties. (iii} Experiments would be performed and
models developed that establish the matrix cracking sequence in 2-D

materials {Hutchinson, Evans, Kedward). These would be conducted on
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TABLE IV

Summary of Non-Dimensional Coefficients

[F/70- f)]2 (Ef EL /Efn)(a0 1/RS,), Flaw Index for Bridging
(ap /R)(Sp /EL), Flaw Index for Pull-Out

T (1- f)2E; Em/ £ 1°EL R, Crack Spacing Index

b, (1 —alf)2 R‘c?g /4dTE,, f2, Hysteresis Index

Gp /En Q, Misfit Index

61y, szf /(1- £)E2, RE, Matrix Cracking Index

E, fQ/Eg(1-V), Residual Stress Index

(1/¢1Q)T; /En R, Debond Index
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CMCs with a range of different constituent properties and fiber
architectures. The plastic strains would be related to constituent properties
by adapting the 1-I .nodels.

The in-plane shear behavior will be characterized by performing
experiments and developing models of matrix cracking that govern the
plastic shear strain in 2-D CMC (Evans, Hutchinson, Bao). The information
will be used to establish the constitutive laws for in-plane shear, as well as
interlaminar shear. For continuity of interpolation between tension and
shear, the shear models will include the same constituent properties as
those used to represent the tensile behavior.

The model-based constitutive laws, based on matrix damage, will be
built into a CDM (continuum damage mechanics) formulation, compatible
with finite element codes (Hayhurst). Computations will be performed to
explore stress redistribution around holes and other strain concentration
sites. The calculations will establish visualizations of stress evolution that
can be compared with experimental measurements performed using the
SPATE method, as well as by Moiré interferometry (Mackin, Evans). These
experiments will be on specimens with notches and holes, loaded in tension.
The comparisons between the measured and calculated stress patterns will
represent the ultimate validation of the constitutive law. The composite
codes, when validated, will be made available to industry.

Some preliminary experimental work will be performed on pin-loaded
holes. Damage patterns will be monitored and stress redistribution effects
assessed using SPATE (Kedward, Evans, Mackin). These experiments will be
conducted on SiC/CAS and SiC/C. The results will provide the focus for

future CDM computations, based on the constitutive law for the material.
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Smaller scale activities will involve basic aspects of stress redistribution
around holes caused by fatigue and creep damage, using the experience
gained from the matrix cracking studies. Some experimental measurements
of these effects will be performed using SPATE (Zok, Evans).

Some delamination crack growth measurements and calculations are
also envisaged {(Ashby, Kedward, Hutchinson). Cantilever beam and
C-specimens will be used for this purpose (Fig. 4). During such tests, crack
growth, multiple cracking and stiffness changes will be addressed. Models of
bridging by inclined fibers will be developed (Ashby) and used for
interpretation.

3.3 Metal Matrix Composite Design

The 3D constitutive equations for MMCs are now available for use in
the ABAQUS finite element code, and the immediate task is to use these
equations to predict the behavior of representative components (Leckie). One
such system is a ring-type structure which is being studied together with
Pratt and Whitney. Clearly no experimental verification is possible with a
component of this scale, but the experience of Pratt and Whitney shall
provide invaluable input on the effectiveness of the calculations. A
component sufficiently simple to be tested is the panel penetrated by holes.
The holes shall be both unloaded and loaded (Jansson), and it is expected to
include the effects of cyclic mechanical and thermal loading.

It is proposed to develop simplified procedures which are based on
shakedown procedures (Jansson, Leckie). Demonstrations have already
been made of the effectiveness of the Gohfeld method (which uses only
simple calculations) in representing the behavior of MMCs subjected to

cyclic thermal loading.
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During the complex histories of stress and temperature. it is known
that the matrix-fiber interface properties change. Fatigue loading (Zok) is
know to decrease the interface sliding stress. Transverse creep appears to
cause matrix-fiber debonding (Jansson), which might result in loss of the
ability to transfer stress between matrix and fiber. It is intended to study
this effect of transverse creep on the integrity of the longitudinal strength of
the material by performing tests on panels which shall allow rotation of the
stress fields. A good understanding now exists of the fatigue properties of
MMCs (Zok). It is intended to extend the ideas developed from earlier
theoretical studies (McMeeking, Evans) to include cyclic thermal effects and

experimental programs on holes in plates.

4. MANUFACTURING

The activities in processing and manufacturing have had the following

foct:
* Matrix development to address specific requirements identified by the
design problems, particularly first matrix cracking in CMCs (Lange)
and creep strengthening in MMC/IMCs (Levi, Lucas]).

¢ Hybrid architectures which offer possible solutions to environmental
degradation and thermal shock problems (Evans, Lange, Leckie, Levi,
Yang, Zok).

» Software development that predicts and controls fiber damage and
interface properties during densification (Wadley).

* Processing techniques to generate model MMC sub-elements (Leckie,
Levi, Yang).

21




4.1 Metal Matrix Composites

Work on MMC matrix development has focused on dispersion
strengthening approaches to increase the transverse tensile and creep
strength of 1-D and 2-D fiber architectures. The initial work has emphasized
a model system, Cu/Alp0O3, wherein dispersoids are produced by internal
oxidation of a dilute Cu-Al alloy deposited by PVD onto sapphire fibers.
These are subsequently consolidated by HIP'ing. Specimens with fiber
volume fractions of 0.3 << 0.5 and 2-3% 7Y-AlpO3 dispersoids {~ 20 nm in
size) have been produced in this manner and will be tested to assess their
transverse creep behavior. The new emphasis will be on higher temperature
matrices based on TiB dispersoids in Ti-(Cr/Mo)-B alloys (Levi). Initial
solidification studies have demonstrated the potential of these materials as
in-situ composites. Efforts are underway to develop sputtering capabilities to
implement this concept.

Fiber damage during densification of composite prepregs generated by
plasma-spray (GE) and PVD (3M) have also been emphasized (Wadley).
Interdiffusion studies coupled with push-out tests have been used to study
the evolution of reaction layers in Ti/SiC composites and their effect on the
relevant interfacial properties as a function of process parameters.
Additional efforts under other programs have focused cn developing
predictive models for fiber breakage during densification. The interdiffusion
and breakage models are being incorporated into software that predicts
pressure-temperature paths, which simultaneously minimize fiber damage
and control the interface properties.

The feasibility of producing MMC sub-elements consisting of fiber

reinforced rings (1-D) and tubes (2-D) has been demonstrated by using
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liquid metal infiltration of Al alloy matrices (Levi). These are presently
undergoing testing in combined tension/torsion modes. Future efforts will
be directed toward extending the technique to other shapes {(e.g., plates with
reinforced holes), as well as devising methods to modify the (currently
strong) interfaces. The identification of methods that provide the appropriate
interfacial debonding/sliding characteristics should enable the use of these

composites as model systems for higher temperature MMCs. such as Ti.
4.2 Intermetallic Matrix Composites

The focus of the IMC processing activities has been on the synthesis of
MoSiy/ B-SiCp composites by solidification processing. These materials are of
interest as votential matrices for fiber composites. Significant progress was
made in the eiucidation of the relevant Mo-Si-C phase equilibria, the growth
mechanisms of SiC from the melt and their impact on reinforcement
morphology, as well as the orientation relationships between matrix and
reinforcements, and the interfacial structure. An amorphous C layer, <5 nm
thick, was found at the MoSi3/SiC interface in the as cast condition, and
persisted after 12 h heat treatments at 1500°C. This interfacial layer has
been reproduced in a-SiCp/(MoSiz + C) composites produced by powder
metallurgy techniques and was found to exhibit promising debonding and
pull-out behavior during fracture (Levi). Future efforts are aimed at

implementing this in-situ coating concept in a-SiC fiber composites.
4.3 Ceramic Matrix Composites

The processing issues for creating CMCs with high matrix strength
continue to be explored (Lange, Evans). The basic concept is to create a

strong ceramic matrix framework within a fiber preform, by means of slurry
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infiltration followed by heat treatment. This stron< framework would then be
infiltrated by a polymer precursor and pyrolyzed to further densify the
matrix. It has been demonstrated that strong matrices of Si3N4 can be
produced using this approach (Lange). Further work will address

relationships between matrix strength and microstructure {Lange, Evans).
4.4 Hybrids

These activities cover materials consisting of thin monolithic ceramic
layers alterna‘”  with layers containing high strength fibers bonded by a
glass or metallic binder. The primary motivation behind this concept is the
potential for manufacturing shapes that have a high resistance to
environmental degradation and also have good thermal shock resistance.
The concept has been demonstrated using alumina plates and graphite
reinforced polymer prepregs (Lange). The availability of glass-ceramic
bonded SiCt prepregs and tape-cast SiC plates has facilitated the extension
of this technique to high temperature systems (Lange). Future assessment
will address new crack control concepts. These concepts would prevent
damage from propagating into the fiber reinforced layers, especially upon
thermal loading (Zok, Lange). If successful, this concept would allow the
development of hybrid CMCs which impart resistance to environmental
degradation, as well as high thermal strain tolerance.

Preliminary work has been performed on laminates consisting of
alumina plates and sapphire-fiber reinforced Cu monotapes (Levi). The latter
are produced by deposition of Cu on individual fibers which are
subsequently aligned and bonded by hot pressing between two Cu foils.

After suitable surface preparation, the alumina/monotape assemblies are
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bonded by hot pressing. Future work is aimed at implementing the concept

with Ni based alloys.

5. SENSORS

The principal challenge being addressed is the non-destructive and
non-evasive measurement of stresses in composites (Clarke, Wadley). The
motivation is to make detailed measurements of stresses in components for
incorporation into evolving design models, as well as validation of the stress
distributions computed by finite element methods. A major emphasis has
been placed on measuring the residual stresses in sapphire fibers in various
matrices, using the recently developed technique of optical fluorescence
spectroscopy. These measurements have provided data on the distribution
of residual thermal stresses in the fiber reinforcement, as a function of
depth below the surface. This approach will be extended, in conjunction
with finite element modelling (Hutchinson), to measure the stresses during
the process of fiber pull-out from a variety of metal and ceramic matrices.
Initial experiments indicate that such in-situ measurements are feasible.

The technique will also be applied to the measurement of the stresses
in sapphire fibers located in the vicinity of pin-loaded holes in order to
understand the manner in which the stresses redistribute during loading. It
is anticipated that this measurement will provide information about the
detailed fiber loadings and also about the stresses that cause debonding of
the fibers from the matrix. Moreover, in support of the activities on thermal
ratcheting, the redistribution of stresses with thermal cycling will be
established. This will be accomplished by using the fluorescence technique
as well as Moiré interferometry, based on lithographically defined features.
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Remarks on crack-bridging concepts

G Bao
Mechanical Engineering Department, The Johns Hopkins University, Baltimore MD 21218
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The article draws upon recent work by us and our colleagues on metal and ceramic matrix
composites for high temperature engines. The central theme here is to deduce mechanical
properties, such as toughness, strength and notch-ductility, from bridging laws that characterize
inelastic processes associated with fracture. A particular set of normalization is introduced o
present the design charts, segregating the roles played by the shape, and the scale, of a bridging
law. A single material length, §,E / 0, emerges, where §, is the limiting-separation, &, the
bridging-strength, and E the Young's modulus of the solid. It is the huge variation of this
length—from a few nanometers for atomic bond, 1o a meter for cross-over fibers—that underlies
the richness in material behaviors. Under small-scale bridging conditions, §4E / 0, is the only
basic length scale in the mechanics problem and represents, with a pre-factor about 0.4, the
bridging zone size. A catalog of small-scale bridging solutions is compiled for idealized bridging
laws. Large-scale bridging introduces a dimensionless group, a/(84E / 0,) . where g is a length
characterizing the component (e.g., hole radius). The group plays a major role in all phenomena
associated with bridging, and provides a focus of discussion in this article. For example, it
quantifies the bridging scale when g is the unbridged crack length, and notch-sensitivity when a
is hole radius. The difference and the connection between Irwin's fracture mechanics and crack
bridging concepts are discussed. It is demonstrated thar fracture toughness and resistance curve are
meaningful only when small-scale bridging conditions prevail, and therefore of limited use in
design with composites. Many other mechanical properties of composites, such as strength and

notch-sensitivity, can be simulated by invoking large-scale bridging concepts.

1. BACKGROUND

Building upon the analyses of Dugdale (1960) and Bilby et
al. (1963), Cotrell (1963) put forward the concept of crack-
bridging as a unifying theory for fracture at various length
scales, from atomic cleavage to void growth. Much has
happened in the last thirty years in developing this idea for all
kinds of materials—metals, ceramics, polymers, cementitious
materials, and their composites in various forms. In this
article, we try to place the relevant aspects into the
perspective of design with—and of—ceramic matrix
composites. In particular, we will emphasize the concept of
large-scale bridging, and its implications for swrength, notch-
sensitivity, and splitting resistance.

This section sets the stage for our remarks on crack
bridging concepts. In particular, we briefly discuss bridging
laws, the microscopic properties to be transmitted to
continuum models. The fundamentals of Irwin’s fracture

mechanics are reviewed, motivating the models for
toughness, and demonstrating the limitations of small-scale
bridging. The section is concluded with comments on
current practice of fracture testing, and needs for large-scale

bridging concepts.
1.1 Atomic bond vs fiber bridging

A solid will fall apart unless something holds it together. For
example, an ionic crystal adheres by electrostatic force
between unlike tons. A unifying idea, sufficiently rigorous
for our purpose, is 10 represent atomic bond by a relation
between attractive stress, o, and separation, 8, of two
lattice planes. Such a relation is sketched in Fig. 1, and is
formally writien as

0/0,=2(5816,). 1
The dimensioniess function y describes the shape of the
relation; the scale is set by strength, o,, and limiting-
separation, 8,. For an inorganic solid, the strength is about

"Micromechanical modelling of quasi-brittie materials behavior® edited by Victor C Ui, ASME Book No AMR 118 $60 (membaers $30)
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one tenth of its Young's modulus, and the limiting-separation
is on the order of lattce spacing (see Table 1).

FIG. 1 A swress-separation relation that represents both alomic
bond and fiber bridging. The strength and limiting-separation
are very different for the two mechanisms; see Table 1.

TABLE 1 Hlustranve properues for bridging mechanisms

atomic fiber fiber

bond puli-out cross-over
0, (Nm?) 10%° 10° 107
8, (m) 1010 103 10
0y0,(im?) 1 1 10
8,E/0, (m) 10 107 ]

As pointed out by Needleman (1990), relation (1)
inroduces a stress level 6, and a length scale 6,, and
provides an ntrinsic failure criterion, based on which
macroscopic phenomena can be simulated. Table 1 lists the
values of 6,8, and §,E / 6, (Young's modulus is taken to

be E ~10'"'N/m?). As we shall see later, they represent,
with pre-factors of order unity, fracuire energy and fracture
process zone length, respectively, when the process zone is
much smaller than flaw size. The significance of the length,
S | &, was first appreciated by Cottrell (1963), and will
be further elaborated upon in this article in connection with
composite design.

Things other than atomic bonds can also hold a material
together. Illustrated in Fig. 2 are swong fibers bridging a
ceramic matrix, mimicking atomic bonds holding a solid. By
analyzing a fiber-matrix cylinder, one finds an approximate
stress-separation relation (Marshall et al. 1985; also
Hutchinson and Jensen 1990 for a correction):

o/ 0o={5/60)".
The closure-strength is

@

Co = fSs. 3
where S, is the fiber bundle strength, and f the fiber volume
fraction. The limiting-separation is

_(-fys?

50 = SET R. 4)

where R is the fiber radius, t the sliding friction of

fiber/matrix interface, and £ the Young's modulus, assuming

that elastic constants are identical for fiber and matrix. In
practice, &, can be varied substantially by varying 7.

Note that (2) is valid before fiber breaking. Fiber pull-

out after breaking has also been modeled; see Hutchinson and

Jensen (1990) for review. Yet design with ceramic matrix

composites under static loading, and metal matrix composites
under cyclic Joading usually allows mamrix cracking to relieve
stress concentration, bul requires fibers 10 remain inact, so
that (2) provides a conservanve hmit in design.

=

F1G. 2 Fiber pull-out.

Fibers can even bridge transverse cracks if they are not
perfectly aligned (Fig. 3). High fracture resistance due 10
cross-over fibers has been demonstrated for a glass matrix
composite (Spearing and Evans 1992). The swess-separauon
rclation has not been modeled in any detail, but the flexible
fibers are expected to provide small closure-strength and
large limiung-separation. Values listed in Table 1 are
inferred from the experimental data of a CAS/SiC composite.

Ductile, crack-bridging particles can substantially
toughen a ceramic (e.g., Bannister et al. 1992). The closure-
strength is a few times the yield stress of the ductile alioy,
and the limit separation scales with the product of the size
and the ultimate strain of the particles. They are also
influenced by debonding of the particle/matrix interface
(Mataga 1990, Bao and Hui 1990).

All bridging mechanisms can be represented by suress-
separation relations, but there is a significant difference: the
scales of 6, and ;. It is the large variation in the bridging
scales, from a nanometer o a meter, that accounts for the
richness in material behaviors. In particular, as indicated in
Table 1, the fracture energy and damage extent differ
substantially for atomnic bond and fiber bridging.

Given a stress-separation relation that tells how a solid is
held together, one can analyze any components to determine
the load-carrying capacity, which is the approach to be
reviewed in this article. However, this was aor how Irwin
established the Linear Elastic Fracture Mechanics. In fact,
LEFM makes no reference to microscopic details of fracture
process. To place bridging concepts into perspective, it is
interesting, then, to first reflect upon the facts underlying the
fracture meckanics that is independent of the fraciure
mechanisms. The classical view outlined below can be
found in the wxtbook by Kanninen and Popelar (1985).

cross-over fibers Fiber direction

47
%y;___;
i

FIG. 3 Fiber cross-over.




1.2 Linear elastic fracture mechanics

Ironically, it is the very wrclevance to microscopic details
that gave nise to the great success of fracwure mechanics in the
early days. LEFM is versatile: it applies, with some
justificauons, to any solids—meltals, ceramics, polymers and
composites. LEFM is precise: it relies on macroscopic
measurements of toughness and elasticity solutions of siress
intensity factors. LEFM is far-reaching: the concepts have
been extended to ductile fracture, fatigue cracking, dynamic
fracture, and mnterface debonding.

Irwin's LEFM erects upon a single premisc: At the onset
of fracture, the material is elastic over the whole component,
except for a damage zone localized around the crack tip,
whose size L is much smaller than crack size a:

Lo«a. (5)
The condition is satisfied by either a large crack. or a bnude
solid suffering little diffused damage upon fracture. This
statement will be made more precise later

Then follows the central corollary: However complex a
fracture process is, a single material property {called
loughness) quantifies the resistance to fracture. That is, for
a given material, toughness measured from a laboratory
sample can be used 10 design components.

No microscopic details are mentioned.

The elastic field in a component is analyzed as if the
crack tup—or the tiny inelastic zone—were a mathematical
point with no physical structure, an 1dea analogous to the
boundary layer approach in fluid mechanics. Such stress
field is square root singular:

o, ~KQ2m)"?E(9), 6
where r and 6 form polar coordinates centered at the crack
up, F,(8) are functions listed in elasticity textbooks, and K
is stress intensity factor. The external boundary conditions
of the component do not change the structure of the singular
field—the square root and functions £,(6)., but do change
the magnitude of K.

The physical significance of K can be appreciated from
Fig. 4. The actual stress distribution is modified in two ways
from the elastic solution (6). Within the damage zone, the
inelastic deformation redistributes stress, bounding the stress
by the closure-strength, 0,. Close 1o the component
boundary, the stress merges to the boundary conditions.
Despite the modifications, provided condition (5) is satisfied,
the stress field within the annulus, Lo<r<a, is well
approximated by elastic solution (6).

Consequently, K is the only parameter through which
the applied load can influence the damaging process at the
crack up. The resistance to fracture can therefore be defined
as the maximum stress intensity factor that a matenal can
sustain. That is, for a given cracked specimen made of a
certain material, denoting K as the stress intensity factor of
the geometry and loading, and K, the toughness of the
material, the crack will not grow if

K<K,. )]

In contrast to other measures of toughness such as

impact energy, K, is both macroscopically measurable and

quanutauvely relevant to design. Two hiandbooks are thus
sufficient: one conuuns suress intensity factors of vanoys
geomerries, computed from clasucity problems: and the
other conunns toughness values for vanous mareriuis.
measured from laboratory samples.

No microscopic details are menuoned.

Another useful concept is energy release rate ¢, the
decrease of elasuc strain energy of the body, for a umit area of
crack growth, when the deflection at the external loading
point is held fixed. 1rwin (1957) showed that ¢ and K arc
relaed by

G=K/[, (83
where £ = E for planc suress, and £ = E/(1 - v7y for
plane strain, £ and v being the Young's modulus und
Poisson's ratio. Fracture energy T is related to X, by a
similar relation

r=K/E. (9)

In summary, K and ¢ are equivalent /ouding
parameters; K _and T are equivalent material properues.
All these are valid concepts when small-scale damage
condition (5) prevails.

actual stress d:smbuuonJ

singulanity
o~ KQ2rr)'?

Ly

damage, K-annulus ' component
zone 4 ' boundary

FIG. 4 Elastic solution and actual stress distribution.

1.3 Mechanics of toughness

Powerful as it is, LEFM uncovers little of what happens
within the damage zone. There is a number of
disadvantages of this black-box approach. For one,
toughness can be enhanced by controlling microstructure: it
1s of great significance to have a theory for toughness, so that
the controliable quanuties can be opumized. This theme has
been vigorously pursued for the past twenty years,
culminating in an understanding of toughness—to various
degrees of sophistication—for almost all engincening
materials. For example, the microstructural basis of
toughness has been reviewed by Evans (1990) for ceramics,
by Ritchie and Thompson (1985) for ductile alloys, and by Li
(1990) for cementitious materials.

Here we focus on toughness mechanisms that can be
described by siress-scparation relations. The standard smali-
scale bndging modet 1s as follows (Fig. 5). If condiuon (5) is




satisfied, the crack can be taken to be semi-infiniie compared
to the damage zonc size L, and the extermal boundary
conditions condensed 10 stress intensity factor K, or energy
release rate G, by handbook soluuons. The bridging law (1)
is applied in the damage zone. coupled with the elasuc sohd.

A fiber-reinforced ceramic is characterized in a3
mechanical test by a resistance curve { R-curve), such as that
inFig. 6 A pre-cut 1s made prior 1o a fracture test and, upon
loading. o dnving force, I, about th matnix fracture energy,
starts matrix crack. As the cra,  @ngth L increases and
more fibers bridge the crack, higher dnving force is needed
to maintan the growth. The scparation at the pre-cut root
finally reaches the limiting-separation, 8, = &, after which,
the damage strip is in a steadv-state, translating in the body,
cracking the matrix in the front, and breaking the fibers in the
wake. Quantitics of significance on an R-curve are the
plateau fracture energy. I, and the crack extension to atiain
the plateau, L. which is the length referred to in (5).

Neglecting T, and assuming a rectilinear bridging law
{the rectangle in Fig. 1), Bilby eral. (1963) showed that the
plateau fracture energy is

= 0060 . (10)
and the steady-state damage zone size 1S
Q:%E'&oloo. (11

Observe that L, scales with the material length §,£'/0y.
As will be shown later, a different bridging law shape y only
modifies the pre-factors in (10) and (11) within order unity.
The esumates based on these formulas are listed in Table 1,
and discussed below.

Atomic bonds break at a small limiting-separation,
amounting o both a small fracture energy and a small
damage zone. In practice, condition (5) is always justified,
so that LEFM is valid for inherently brittle solids containing
cracks longer than a few nanometers.

In contrast, large limiting-separations in fiber bridging
lead to both large fracture energies and large damage zones.
As indicated in Table 1, the bridging zone size for fiber
pull-ou’ —ay violate condition (5), depending on specimen
size. > bridging zone size for fiber cross-over will
cenain.: violate (5) for most applicatons.

G, K

FIG. 5 Small-scale twidging model: the damage is embedded
mnak % .1 decoupled from the actual component geometry.
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Fig. 6 An R-curve under small-scale bridging condiuons

Given o, and J,,. (10) and (11) provide esumates for
fracwure energy and brnidging zone size. For example, using
(3) and (4) for a fiber-reinforced ceramic, one finds that the
fracture energy scales with

. JU-/VSiR

26t

and the steady-state bridging zone size scales with

LO_T%(I-]')“S,,R.

fr

Relations of this sort are easy fo obtain for other brndging
mechanisms, and can serve as a guide for microstructure
design. For example, it is clear from (12) that a2 composiie
gains high fracture energy from a largc fiber strength and
radius, but a small sliding friction.

Yet these same quantities also cause a long damage
zone. The small-scale damage condition (5) can be
combined with (11) to give

a/(8eE 10g) » 1. (14)
The above dimensionless group will appear many tumes in
this article, and provide a focus for discussions. In this
context, it measures the unbridged crack length, a, in units
of material length, 6,£'/0,. Condition (14) is rarely
sausfied in practice for a component made of a composite, so
toughness is of limited use in design.

(12

(13)

1.4 Large-scale bridging

In the recent literature, there is a tendency to report
"effective” R-curves, converted from either numerical
simulation or experimental recerd. As demonstrated by Zok
and Hom (1990), under large-scaic bridging conditions, the
R-curves so constructed depend sensitively on spccimen
geomeltry and size: they are ineffective and misleading. The
practice must be stopped.

Retrospectively, this tendency stems from the success of
the concepts related to stress intensity factor in design with
metals and ceramics. However, as we will se¢ later in this
anticle, since large-scale bndging 1s prevalent in composites,
many significant concepts in design with, and of, compositcs,
such as strength and notch-britticness, cannot be deduced
from fracture toughness. An all-embracing statement, when
large-scale bndging conditions prevail, is that Irwin's one-
parameter framework, the classical LEFM, is invalid. To
determine load-carrying capacity, a stress analysis is required
for coupled specimen and bridging law. Consequences of




this statement will be reviewed in Secuon 3.

2. SMALL.SCALE BRIDGING SOLUTIONS

Smali- and large-scale bridging solutions are discussed in
dewut in this and next section, respecuvely. The two topics
can be read independently, in any order.

2.1 General problem

Now the small-scale bridging mode! (Fig. 5) is taken up to
compute R-curves (Fig. 6). Stress analysis is unnecessary 10
compute the plateau fracture energy, I'. An application of
Rice's J-integral shows that
8,18
6=Gup+ o), 2(€)de, (s)
This equation gives plateau fracture energy [ when
6,/50’:13“(1 %:ro.
A stress analysis is necessary to compute the full R-

curve. On dimensional grounds, the separation at the root of
the pre-cut takes the fomx

( Lo,
16
L 3E 7 (16)
and the stress imensny factor at the crack tip
K, Lo,
-ﬂ- , 17
Oovil (50‘5' w_/ ) 1n

Functions f and g will also depend on bridging law shape
x. but nothing else. Integral equations are efficient 1o solve
this class of problems (e.g., Budiansky et al. 1988). Observe
thatX and G, and K, and G, are both related by Irwin's
relation (8), so that only two among (15), (16) and (17) are
independent.

After f and g are computed, the rising part of the R-
curve is given by (17) by letting Kup = K, and the steady-
state bridging zone size L, is solved from (16) by letting
8,/8,=1 and K=K, =(TE)*?. Explicit solutions are
collected in the following sections to assist practitioners in
the field.

2.2 Rectilinear bridging law

First consider the rectilinear bridging law (the rectangle in
Fig. 1). Specialized from (15}, the plateau fracture energy is

r= r0+6060. (18)
The stress analysis gives (Tada e al. 1985)
K=(8/r)"0,VL +Kq. 19)

This equation defines the rising part of the R-curve. The
bridging zone size, L, is obtained by substituting (18) into

{(19), giving
12 1272
e, To | . To Q0
ef} 0odo 0od

For the same bridging mechanism, i.e., 6, and §, being held
constant, the tougher the matrix, the smaller the bridging

=z
l"‘s

zone size. When I/ 048, « I, which is typically the case
for fiber-reinforced ceramics, (18) and (20) recover (10) and
(11), respectively.
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FIG. 7 Bridging laws with harderung and softening.
23 Hardening and softening

Consider the stress-separation relation sketched in Fig. 7,
having an analytic form
g,+s36, 8<d,
o= {O, 5> 60‘
where s is the slope: s > 0 for hardening, and s < O for
softening. The shapes are versatile enough to fit many
bridging mechanisms, and yet the solutions are simple
enough to be tabulated completely. Equation (15) is
specialized to

@D

G=To+ 0ob,+ 557, 2)

The driving force attains the plateau I" when 8,/ §5=1.

TABLE 2 Hardening Bridging

88 €y cl
0.25 1.244 1.670
0. 1.478 1.737
1 1.91 1.836
2 268 1.984
5 444 2.184
10 6.54 2307
i5 8.1 2.356
20 9.51 2.386
25 10.70 2.404
30 11.76 2414

Once o, is treated as a residual stress, the problem
becomes purely linear (e.g., Suo et al. 1992a). Lineanty and
dimensionality dictate that

K-—-Cg GOJZ“’ CzKo, (23)
and that
8,= 00l 1 E'+c,KVL | E'. (24)
The pre-factors, ¢, depend only on dimensionless parameler
B=sL/E. {25)
Substituting (23) and (24) into (22) gives a quadratic in K
and o, being identically zero. This in turn implies that the
coefficient of each term in the quadratic vanishes, leading to
6=(1+26)" cy=(c-1)/B. ca=2c,.  (26)
That is, all ¢s are determined if any one of them is.

The hardening spring with 6¢=0 has been solved by

Budiansky e al. (1988). In present notation, their paper




gives ¢, reproduced in Table 2. Also listed are values of ¢,
inferred according to (26).

For many bridging mechanisms, stress rises sharply with
a small separation and then decays with a long tail, well fiued
by the linear sofiening tnangle in Fig. 7. Bao and Hui (1990)
solved the problem when K, = 0, and their results are listed n
Table 3. The solution is now interpreted for the general case
with Ko 0, with ¢4, ¢, and ¢, obtained from (26).

When [/0,8, « 1, the platcau fracture energy is

r=1o,. @n
and the damage zone size upon fracture is
Lo=0.366E'8,/ 0, (28)

These can be compared to (10) and (11) for rectilinear
bridging.

TABLE 3 Softening bndging

-4fm 2KEod,
0.05 0.192 1.564
0.1 0.366 1.526
0.15 0.52; 1.487
02 0.657 1446
025 0771 1.40)
03 0.864 1.354
035 0.933 1.303
0.4 0978  1.248
0.45 0.998 1.189
0.466 1.000 1.169

To demonstrate the effect of bridging law shape, R-
curves calculated using rectilinear and softening laws are
contrasted in Fig. 8, both with I'j/ 6y6,=0. The plateau
fracture enercy I' and the strength o, can be measured
macroscopically, so they are used to normalize the R-curves.
As shown in Fig. 8, given the same I' and o, the damage
zone sizes differ by approximat..y a factor of 2. R-curves
derived from most other bridging laws are expected 10 be
bounded between the two curves in Fig. 8.

2.4 Power-law bridging

Power-law

0/0,=(8/8,)" (29)
embodies fiber pull-out as a special case (m = 1/2), and
linear and rectilinear relations as limiting cases (m = 1 and
m = (), respectively). The gencral solution takes the form

‘ GIT
reculinear
1 j=—
softerung
LIET o}
1 | -
0.393 0732

FIG. 8 R-curves due 10 rectilinear and softening bridging.

8,/ 8q= A" K ooV m),  (30)

and
Kool OoVL = A" k(570K f o, VT m), (31

where

A=Li{8E [0,). 132)
A scaling relation noted by McMecking and Evans (1990;
and Cox (1992) is used to obtain the above functional forms.
Dimensionless functions A and k¥ depend on two vanables as
indicated; they will be abulated clsewhere (Gu et al. 1992).

3. CONSEQUENCES OF LARGE-SCALE BRIDGING

When large-scale bridging prevails, K, T’ and R-curve are
irrelevant concepts, and load-carrying capacity must be
computed by analyzing the component geometry coupled
with the bridging law. A large-scale bridging model consists
of two elements: denive the bridging law for a candidate
matenal from either micromechanics models or mechanical
tesis; and compute the load-carrying capacity by analyzing a
projected component coupled with the bridging law.
Attention here is focused on the latter in a special context:
how various mechanical properties, such as strength, notch-
ductility and splitting-resistance, can be deduced from
bridging laws.

3.1 Dimensionless groups

A dimensionless group appears in all large-scale bridging
models (see Appendix):
a
=S E oo
Note that « is the same in (14), but a should be interpreted
as a characteristic length of the component. As we shall see,
various size effects stem from this dimensionless group.
Design charts can be organized in a nondimensional
form. Figure 9 illustrates a panel containing a notch of size
a loaded by stress &. The load-carrying capacity is writlen
Tman/ G0 =F(a.To/ 046,). (34)
Parameter Iy / 046, measures the relative amount of energy
dissipation at the crack tip (e.g., matrix toughness). Also
entering (34) are ratios of a to other lengths specifying the
component geometry, such as notch root radius and panel
width. A different bridging law shape y only modifies the
design curves within order unity, which usually does not
affect qualitative conclusions (e.g., notch-brittle or -ductile).
Segregauon of the shape from the scale of a bridging
law is of practical significance. Once charts arc constructed
for T0&ANized bridging laws with important design features
(e.g., holes), components with actual bridging laws can be
designed, with the chants, by fitting 10 one of the idealized
laws. This approach is equally valuable in design o
composites. In this phase, the detailed bridging law shape
may be unknown, but the scaie of the bridging. o, and &,
can be related 1o microstructural variables. Whether a

(33)




material 1s viable for a particular application can be assessed.,
before the material is made, by consulung the charts.

The gencral mechanics problem is stated as follows (Fig.
9). In a body of charactenstic length g loaded by stress &, a
matrix crack trajectory of length L is identficed,
experimentally or hypothetically, emanating from a stress
concentrator, bridged according to stress-scparation relauon
(1). The separation at the end of the crack takes the form

5./80=f(G/04 a,L/a), (35)
and the energy release rate at the up
Gup! C080=8(G /0y . L/a). (36)

Funcuons f and g will also depend on bridging law shape
x. and rauos of a to other lengths characterizing the
component geometry. The coupled problem, either linear or
nonlinear depending on %, can be solved by both intcgral
equation and finite element methods. An integral cquation
using dislocation kemnels is derived in Appendix, from which
(35) and (36) can be inferred.

b 4 4
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FIG. 9 Large-scale bridging model: the bridging zone is
coupled with component geometry.

For rectilinear bridging, iinearity dictates that
6E'/a= f,0~ f,0,, (37
and that
Ky /Va = f3-f0,, (38)
where fs depend on damage extent L/a, and ratios of a
over lengths specifying the geometry, but not on @. In
particular, when K, = 0, the above lead 10

Goan! G0 = fal f3, 39
and
a 1
= . 40
SE10g (fifal fr)-f2 o

This pair gives the function (34), damage exicnt L/a being
regarded as a parameter. Solution for linear softening is stiil

of form (37) and (38), but fs in addition depend on a.
For power-law bridging (29), the solution takes the form
8,/8o=a"""a(a™""™5 16y, Lia), (@D)

and

Kup! 0V = ™" k(a5 0y, L/ a). 42)
The dimensionless functions A and & also depend on m, and

the rauos of a over lengths speaifying the geomeuwy, bul
nothing else (see Appendix). Many soluuons of this type
have been given by the group at Rockwell Internauonal
{Marshall er al. 1987, Cox and Lo 1992, and Cox 14992,

In obtaining (39) and (40), G/0, 1 assumed 10
monotonically increase with L. g. so that the maximum load
O max | O happens at 8, = §,. This in generad 135 incorrect
when Gup * 0 (Marshall es al. 1987), or the bridging softens
{Carpinien 1990, Bao and Zok 1992). If this seems 1o be the
case, a formal procedure is as follows. After £ and g are
computed, G, 18 searched ws a function of damage 2xtent
Lia, subjected t0 G, =T in (35),and &, < 6, in 36).

Consequences of large-scale bridging are discussed 1n
the following sections. To focus on issues of qualitative
significance, the bndging law is assumed to be rectihinear,
and the crack tip energy dissipation 1s neghgible,
I/ 648, = 0. unless otherwise stated.

3.2 Strength: monolithic solids vs composites

A comparison of the surength of a monolithic ceramic and the
strength of a composite is particularly illuminating. Similar
comparison has been made by Cotuell (1963) in connection
with notch-brittleness.

The strength of a monolithic ceramic measured by a
mechanical test, S, is known o be only about a hundredth of
the atomic bond strength, ¢,. Griffith (1921) put forth an
explanation on a basis of two postulates: 1) atomic debond is
the only inelastic process during fracture and, 2) the solid
contains fraction-free, crack-like flaws comparabie 10 the size
of microstructure (e.g., grain diameter). The small-scale
damage condition is satisfied: the microstructure is typicaliy
on the order of microns, and the atomic debond process is
confined within a few nanometers. Crack tips are therefore
idealized to be mathematical points in calculating elastic field
in the solid. In particular, the encrgy release rate for a plane
strain crack of size 2a is (Tada er al. 1985)

G=m&?/E. (43)
Atomic debond absorbs energy I' = 0,6,. as given by (10).
The applied stress & reaches strength § when G = I, so that

-1/2
S _L(_“__) _ (a4)
o, Vm\8F' /0,
This curve is indicated by SSB in Fig. 10. Griffith's small-
scale bridging model explaincd the small values of S/ oy
when a/(é'(,E‘/co) » 1. However, as clearly indicated in
Fig. 10, the model fails when a/{8£ /oy) ~ 1. for the
strength of a solid should never exceed the atomic bond
strength.

For a fiber-reinforced ceramic, the dominant inelastic
process is frictional sliding of fiber/matrix interface. Using
the illustrative properties in Table 1, assuming that the
unbridged flaw size, g, is of a fcw fiber diamelters, one finds
that a/(8£'/0p)<1. Conscquently, the bridging zone
length is comparable 1o the flaw size, so that the damage
zone and the flaw must be analyzed as coupled. The




pertinent results are (Tada er ai. 1985)
. F — ;’
é”—€*='(rzz-l)”zli’———'—cos‘l(un)}»f‘—mn, @s)
Coa log = T

and
K g 2 _
S—. A n”z{——wcos l(l/n)jt.
Osvma 0'0 n
where n=1+Lia.
The surength 6 = § is obtained by setting 6, = &, and

Kup=0:

(46)

8 a )1 (758

il L S | P 22 0= 4
n(&os'/aoJm[m\z aojj b @)
This equation is indicated by LSB in Fig. 10. A comparison
of the two curves gives a quantitative feel for the regime
where the small-scale bridging assumption is valid. Indeed,
the LSB mode] predicts that §/0, approaches unity when
the unbridged flaw size a is small, as anticipated. Since
typically a/{8,E'/0,) ~ 1 for a composite, the strength of 2
composite is insensitive 1o processing defects, as compared to
the strength of a monolithic ceramic.

W
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ER SSB L
-
-
1 2a
LSB
1 -

1 al(éoE/O'o)

Fig. 10 Strength predicied by small- and large-scale bridging.
The former is correct only when a is large.

5°EI /00

Fig. 11 Suength of a material computed from rectilinear and
softening bridging laws.

To demonstrate the effect of bridging law shape, Fig. 11
plots strength computed from rectilinear and softening
bridging laws (Bao and Zok 1992). The difference is
appreciable, but of order unity. When a proper selecuon of
o, and § is made, bridging laws of other shapes would give
rise o strength bounded between the two curves wn Fig. 11.

3.3 Notch-sensitivity

Holes arc ofien drilled 1n a panel for fasiening or cooling.
Neither toughness nor strength can be directly used to
deiermine the maximum stauc load. However, a designer
knows 1o ignore a smal! hole in a ductile metal panel, but not
a hole in a ceramic. What about a fiber-remnforced ceramic?
To fix the 1dea, Fig. 12 illustrates a panel with 2 hole, and the
question is how much load the panel can carry.

2w

v O |

FiG. 12 A panel containing a hole.

The answer depends on materials. For a monolithic
ceramic panel, the load should be such that the stress at the
hole is below the "strength” of the ceramic. Let & be a
reference value of strength (ignoring statistical distribution),
and C be the stress concentration factor at the hole. The
maximum load that can be carried by the panel is given by

Gras [ Go=1/C. (48)
The stress concentration factor depends on a/w (Peterson
1971); Equation (48) is plotted in Fig. 13. Notice that even a
small hole (a/w = 0) reduces the oad-carrying capacity by a
factor of 3: ceramics are notch-sensitive.

The design critenon is different for a ductile metal panel
under static load. Plasticity relieves stress concentration ncar
the hole, so that the maximum load should be such that the
net section fully yields:

Omas/ Co=1-a/w, 49)
where g, is the yield strength of the metal. Equation (49) is
plotted in Fig. 13. A small hole does not reduce much load-
carrying capacity: ductile metals are noich-insensitive.

What about a panel made of a fiber-reinforced ceramic?
The answer depends on material and hole size. Matrix
cracking ncar the hole, allowing fibers to slide, provides a
mechanism for duculity §, and stress redistribution. The




composite behaves according to the dimensionless group
a (0, notch - ductle
SE 16, |e. notch- brite
That is, notch-sensitivity 1s a property of both matenal and
notch size: for a given composite, a large hole tends to be
ceramic-like, but a small hole metal-like. In pracuce, &, can
be changed, by orders of magnitude, by varying the shding
fricuon. Such experiments would vernify the model.
Classification (50) ecmerges directly from the
dimensional analysis of the large-scale bridging model (sce

(50

Appendix). Another dimensionless group, a/ ( TE"/ og). has
long been used to correlate transition behaviors for metals
{see Kanninen and Popelar 1985). The two groups are
equivalent since T’ ~ §,0,. Large-scale brdging concepts
provide a framework to simulate notch britde-to-ductile
transition behaviors for composites. As we shall see, some
behaviors have close analogues in metals, others do not.

notch-ductile
aoy/ 5(£ =0

notch-bnitle

1/3

aw H

FIG. 13 The maximum load for a panel containing a hole.

circular hole
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Fig. 14 Noich ductile-to-brittle wransition (Ho and Suo 1992).

The maximum loads for intermediate values of
(a0,)/(84E) fall in between the two limiting curves in Fig.
13, which can be computed by invoking large-scale bridging
concepts. Figure 14 plots the results of such a computation

for a hole 1n a large panel (arw = 0). Specificaily, the hole
becomes notch-brittle when a/{8£ /a,) > 10.  For
example, for a composite with 6 £ /0, ~ 1 mm. a holc of a
centimeter radius will be notch-bnitde. The mechanics model
1o construct Fig. 14 15 similar w that in Section 3.2, except
that finue elements are used to compute f5 in (37) and (38).

Also included in Fig. 14 is the maximum load for a panel
containing a crack-like notch (Eq. 47). The two are expected
10 bound the curves for noiches of various root radu.
Computations on the effects of notch radius and clastic
orthotropy are in progress (Gu er al. 1992).

Notch-ductility can be enhanced by various damage
modes, notably, multiple cracking and matrix splitung along
the fiber dircction. To illustrate, consider a hole with splits
(Fig. 15). The extent of the splits, h/a , is determined by the
shear resistance T, resulting from either friction in
unidirectional composites, or bending of 90 degree fibers in
woven composites. The anticipated results are sketched in
Fig. 16. When 1/ o, ~ 0, the splits arc long and the marix
crack becomes an edge crack, so that the full load-carrying
capacity can be reached. When 7/0, ~ o, the splis are
small, so that the curve in Fig. 14 is reached. Detailed results
will be reporied elsewhere (He and Suo 1992).
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v 3 v

FIG. 15 A swess concentrator (the hole) relaxed by splits.

T o/ Gg

FIG. 16 Notch-ductility due to splitting.




3.4 Transverse cracks: Splitting vs tunneling

Two types of ransverse cracks, sphtung and tunneling, are
illustrated in Figs. 17 and 18. They take the same fracture
path in the matnx, along the fiber direcuon, with fibers
crossing over the crack plane. For splitling, the cross-over
fibers supply substanual fracture resistance in addition 10
matnx fracture encrgy (Spearing and Evans 1992). In
contrast, the cross-over fibers provide Little resistance 1o
wunneling cracks (Beyerie et al. 1992). As we shall show,
this is a large-scale bndging effect

To understand the difference, first consider a splitting
beam of thickness 2 A, bridged over length L, and loaded by
moment M (Fig. 17). Typically L is comparable to 2h, but
smaller than the 1otal crack length. The problem has been
analyzed by Suc er al (1992a); the results pertinent 1o the
present discussion are outlined below.

1 2

cross-over fibers

M‘(%zé:=—-
e

—"

Fiber direction

—L

L
FIG. 17 A splining beam tnteracting with cross-over fibers.

An application of the J-integral shows that
R2MY/E'h = 648,+T,, (51)
where the left-hand side is the integral computed over the
external boundary of the beam, and the night-hand side over
the bridging zone. The crack tip energy dissipation, I'g, is
also included for the sake of discussion. The maximum
moment is reached when §, = &
12M2,, / E'R} = 048+ Ty. (52)
Using the illustrative numbers in Table 1 and the typical
value for a glass matrix, I'g ~ 10 3/mZ, one finds that the
cross-over fibers substantially increases M, . Since it is
small, [ is 1o be ignored in the following estimate of the
bridging zone size.

The disturbing number in Table 1, L, = 1 m, is
predicted from the small-scale bridging model. It is
incorrect: L of a few beam thickness, about several
cenumeters, is observed in expeniments. The flexibility of a
beam can substantially reduce the critical bndging zone
length. This 1s a large-scale bndging effect, as shown below,

Dimensional considerations lead to

M (33)

where ay depends only on L/, and is of order unity when
Lih > 1 (Suo et al. 1992a). Combination of {52} and (53)
gives the critical bridging zone length when J, = &
Lo=a""™E'8413a,) *h*'*. (54)
For example, with & 1 cm, one finds L, = 3 cm,
suggesting that the potential fracture resistance can be

1 .2
—al 0,
2 @bk %

realized in bcams with practical size.

The J-integral over the external boundary of the beam
can be mterpreted as the dnving force for splitung. Figure 19
plots J as a funcuon of matnx crack extension, L, where
(53) is the nsing part. and (52) the platcau. In contrast w the
R-curves under small-scale bridging condiuons. the /-{
curves depend on beam thickness. The later are therefore
not malenal properues.

=

A\

FIG. 18 A crack runneling in a 90°-ply.
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Crack Extension,L
FIG. 19 J-integral as a function of crack extension, L, and
beam thickness, A.

Cross-over fibers do not provide much resisiance to
tunneling cracks (Beyerle er al. 1992). A large crack
separation is a prerequisite for using the large himiing-
scparation &, (- 100 um), which cannot be realized in a
tunne! constraincd by the surrounding malerial.
Consequently, tunneling cracks are only resisted by matrix
fracwre energy I';,. A mechanics modcl for tunneling cracks
ts giver by Ho and Suo (1991)

3.5 A note on measuring bridging law

Various methods have been considered to determine the
bridging law from ecither experiments, models, or
combinations (Cox 1991). One such method is described as
follows (Li et al. 1987).

Write a bndging law as




o= aid). (3]

Rice (1968) showed that

J=dy- [ o188, (56)

where J is the J-integral computed over a contour outside
the bndging zone. J,, over a contour close 1o the crack up,
and 8, the scparation at the pre-cut root (Fig. 20). Upon
loading, J, =T, 1s mamntained as the matnx crack extends.
Differentiaung (36) with rospect W &, gives

G(0,) =l 1 ), (57)
Consequenty. the bnidging law can be determined 1f both J
and &, can be dctermined as a function of applied load P.
Since the limiting-scparation for vanous bridging
mechanisms v composites is in the range 10 ~ 100 um,
many experimental techniques may be used to measure 6,
in situ.

Difficulty arises 1o relatc J to the applied load P.
There has been a misconception that J 15 related o P
through handbook solutions for K. This is wrong since
Irwin's relation (8) 1s valid only under small-scale bndging
condiuons. Under iarge-scale bridging conditions, J usually
depends on the bridging law, which is yet to be determined
from the very experiment. A procedure has been proposed
by Li et al. (1987) to determine J experimentally. In
general, the method suggested by (57) will be difficult to use
under large-scale bridging conditions.

There are exceptions. For example, the J-integral over
the external boundary of a splitting beam (Fig. 17) is
independent of the bridging law (Rice 1968):

J=12M?/E'R>. (58)
Thus, splitung beam can be used to determine the bridging
law under large-scale bridging conditions. Specimens having
the same attribute are reviewed by Suo el al. (1992a).
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F1G. 20 Contours over which J-integrals are computed.

4. SUMMARY

Figure 2] summarizes the main theme of crack-bridging
concepts. At the center is the bridging law, denved from
micromechanics models and expeniments, which, combined
with continuum stress analysis, gives rise to mechanical
properues such as toughness, strength, notch-ductility.
Consequenty, bridging law (1) replaces toughness or

strength as the basic matenal property. Together with an
elastic component, the bridgmg law provides a length,
SE' 10y, varying from a nanometer o a meter for different
bridging mechanisms (Table 1), which 15 responsble {or the
vast differences in fadure behaviors. Larpe-scale bndpmg
ntroduces a dimensionless group. a/(8E /0,7, where u s
the length charactenzing a component, having different
meanings n vanous contexts:  unbndged crack size for
toughness. unbndged flaw size for srength. and hole radius
for notch-sensiuvity. [t s demonstrated that the set of
normalizauon introduced in this arucle separates the roles
played by the shape and the scale of a bndgmng law, so that a
design chart can be presented in a nondimensional form (34),
and a different bridging taw only modifies the chart within
order unity. A collection of small-scale bndging solutions 1s
given in Section 2 for several idealized bridging laws.
Large-scale bridging effects are illustrated in Secuon 3 by
examples of pracucal significance,

Mechanical
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Micromechanics
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FIG. 21 The main theme of crack-bndging concepts.
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APPENDIX

A crack, racuon-free or bnideed. 1s equivalent 1o & array ol
continuously distnbuted dislocauons (Bilby er ai 19634
The dislocauon per unst length, b, 15 related w crack
separauon. §, by

bix)=~dd k. (AT
Resulung from geometric consideratons, this has nothing w
do with pile-up dislocauons 1 a real crystal. Soluuons w a
single dislocation interacung with a hole, a free surface, or a
crack are avaiable in the liicrature, which can be used as
kernels 1o formulate integral equauons for notch-sensiuviy
problems (Gu et al. 1992).

To illustrate, consider a hole in an infinite composite
(Fig. 12, a/w = 0). The stress prior 10 matnx cracking is
given by the standard elasticity solution of a hole n an
infinite plate:

o{x)=dF(x/a). (A
where & is the applied stress, and dimensionless funcuon F
1s given in elasticity textbooks. The stress induced by a pair
of edge dislocations, symmetrically located at x = # &, is
given by

o(x)= -Ea-'ﬁ(x/a. £ /a)b(£). (A3)

where K is a known function (Dundurs 1968).
Superimposing the stress due o the dislocations and the
remote stress leads to
oux(8/8y)= ar-%—j:"ﬂ—g:‘f-dz
The bridging law (1) is also incorporated in the above.
Equation {(A4) is the integral cquation governing crack

(A4)

scparation &x), to be solved numerically. Normalizing
(A4) according to

/0y 6716, x/a Lla. (AS)
onc can confirm (35) and (36} for any bridging law, and (41)

and (42) for power-law.
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ABSTRACT

Holes are often dnlled in a panel for cooling or fasiening. For a panel made of a monohthic
ceramic, such a hole concentrates stress. reducing load-carrving capacity of the panel by a factor of
3. By contrast, for a ductile alloy panel, plastic flow relieves stress concentration so that the small
hole does not reduce load-carrying capacity. A panel made of ceramic-matrix composite behaves in
the middle: matrix cracks permit unbroken fibers to slide against friction, leading to inelasuc
deformation which partially relieves stress concentration. Load-carrying capacity is studied in this
paper as an outcome of the competition between stress concentration due to the notch, and stress
relaxation due to inelastic deformation. The inelastic deformation is assumed to be localized as a
planar band normal to the applied load, extending like a bridged crack. The basic model is large-
scale bridging. A material length, 84 / 0. scales the size of the inelastic band, where 0y is the
unnotched strength, §; the inelastic stretch at the onset of rupture, and E Young's modulus.
Load-carrying capacity is shown to depend on notch size @, measured in units of d¢f / 0.
Calculations presented here define the regime of notch ductile-to-brittle ransition, where ceramic-
matrix composites with typical notch sizes would lie. Both sharp notches and circular holes are
considered. The shape of the bridging law, as well as matrix toughness, is shown to be

unimporiant to load-carrying capacity.

1. INTRODUCTION
Cottrell (1963) was among the first to recognize the full capacity of the work of Dugdale
(1960). Barenblatt (1962) and Bilby et al. (1963), and put forth crack-bridging as a unifying
process at all scales—from atomic debond to metal voiding. Instead of being viewed as a
singularity, fracture, or any localized damage band, is now a gradual stretching of nonlinear
springs. He also drew the analogy with the Peierls model, where a crystalline dislocation is a
nonsingular, solitary solution of a spring-substrate system.

The crack-bridging concept integrates physical mechanisms of damage and macroscopic
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performance of materials in two steps. First, a sufficiently localized damage process is represented
by nonlinear springs—be it electron cloud or metal ligament—with essential physical vanables
retained. Second, at a coarse scale, the interaction between the springs and the undamaged elastic
substrate is viewed as a continuum problem. A common thread is that the spring law introduces a
reference stress 0, and a reference length J;, and that together with Young's modulus E of the
substrate, they form a material length, §4£ / 0. varying from a few nanometers for atomic
decohesion, to a few centimeters for metal voiding. This material length determines the size of the
inelastic deformation region. Cotrrell was able to correlate noich-brittleness by the ratio of this
material length to notch size.

Much has since been developed in vastly different contexts. A few recent examples are
cited here. Metal-ceramic debonding is studied by Needleman (1990) on a basis of phenomelogical
spring laws mimicking atomic decohesion, and inelastic substrates representing background
dislocation motion. Using springs with atomic periodicity, Rice (1992) reconsidered dislocation
emission from a crack tip; instead of a full dislocation and a sharp crack (two singulanties!), a
dislocation now emerges incrementally from a crack tip, in a way analogous to Barenblatt's
cleavage process. On a coarser scale, Huang and Hutchinson (1989) modeled shear localizanon by
using springs representing void interaction. Suo (1991) examined domain band propagation in
ferroelectric crystals under combined electric field and stress. Compressive kink band emanating
from a hole is studied by Soutis et al. (1991) with springs representing fiber buckling. Using an
earlier model of Aveston er al. (1971), Marshall et al. (1985) derived a bridging law representing
frictional sliding, which set the basis for much of the subsequent work on composites.

Rice (1976) suggested two approaches to localization. In one approach, localization is due
to loss of uniqueness, the entire band setting in simultaneously from a homogeneous field. In the
second approach, a localization band nucleates at a material defect or a stress concentrator,
spreading like a bridged crack. They are not equivalent, physically or mathematcally. The second

approach has the advantage that a physical length scale is introduced through bridging law, which

Tue, Dec 22, 1992




links material performance with processing variables, such as fiber strength and fiber/matrix
interface friction. The first approach secems to be irrelevant 1o ceramic-matrix composites, where
the band consisting of the matrix crack and sliding fibers nucleates from a processing flaw.

This paper is out of a more practical concern. We have been trying to reconcile design
practices for ductile alloys and monolithic ceramics, and thereby provide a theoretical link between
design with and design of ceramic-matrix composites. A representative design problem, notch
sensitivity, is as follows. Holes are often drilled in a panel for fastening or cooling. In
determining maximum load, a designer knows to ignore a small hole in a ductile metal panel, but
not in a monolithic ceramic. What about a fiber-reinforced ceramic?

To focus the idea, Fig. 1 illustrates a panel with a hole, and the questior is how much load
the panel can carry. For a monolithic ceramic panel, the load should be such that the stress near the
hole is below the strength of the ceramic. The latter is the Griffith stress associated with a crack-
like flaw in the vicinity of the hole surface, of size close to grain diameter. Because of stress
concentration, even a tiny hole reduces the load-carrying capacity by a factor of 3: ceramics are
notch-sensitive. By contrast, a ductile alloy panel is designed with much tolerance. Plasticity
relieves stress concentration, so that the maximum load should be such that the net-section fully
yields. A small hole does not reduce the load-carrying capacity much: ductile alloys are notch-
insensitive.

What about a fiber-reinforced ceramic? Without a hole, a composite sustains stress up to
the fiber strength times the fiber volume fraction. The presence of a hole knocks down load-
carrying capacity, but not necessarily by a factor of 3. Matrix cracks, allowing unbroken fibers to
slide, partially relieve stress concentration. Elastic stress concentrates over a region that scales with
the hole radius, a. On the other hand, sliding fibers provide extra deformation to redistribute
stress over a region that scales with d¢f / 0. Here 4 is the extra displacement due to frictional
sliding at the onset of fiber breaking, ¢, the fiber strength times the fiber volume fraction, and £

Young's modulus of the composite. Consequently, the ultimate load, G ,,, 1s determined by the
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competition between elastic concentration and inelastic relaxation:
a 0, notch —ductile, &,/ 0y =1
8E /0y | nowch-britle, 5,/ 0g=1/3
Both material and notch size are important: for a given composite, a large hole reduces load-

(h

carrying capacity by a factor close to 3, but a small hole does not reduce it as much. Large or
small, hole radius a is measured in units of material length §¢£ / 0¢.

This concept places design practices into perspective. Take @ = 1 ~ 10 mm in usual
engineering practice and take, for ceramic-matrix composites, 6p£ / 0 = 0.1 ~ 10 mm. As our
calculation will show, these put a notched composite into the ductile-to-brittle wransition regime.
Criterion (1) also prompts the notion of designing materials for a given application. For ceramic-
matrix composites, the limiting-separation &, can be varied, by orders of magnitude, by varying
fiber radius, fiber strength and fiber-matrix interface friction. Thus, a composite may be
engineered to make a hole ductile for a required hole size.

In a broader context, 8oF / 0 serves as a figure of merit of ductility. The ultimate strain of
an unnotched bar in tension is not a good measure of ductility; it depends on gauge length and the
number of deformation bands. Cross-section reduction is a valid measure of ductility for metals,
but is not transferable to a notched component, nor does it have any counterpart in composites.

The basic ideas outlined above and a few preliminary results have been discussed in a
review article by Bao and Suo (1992). The present paper is to supply mechanics calculations that
define the ductile-to-brittle transition regime, where ceramic-matrix composites—with holes of
useful sizes—would lie. A more general theme pursued here, as well as in the previous article, is
to search for commonality in large-scale bridging models, where Irwin's linear fracture mechanics
breaks down. A dilemma which has become evident over the last few years is this. While crack-
bridging concepts are versatile to explain many phenomena, the mechanics analyses—and
interpretations—are complicated enough to be author-dependent, particularly in the large-scale

bridging regime. At this stage, any simplification or integration would help.
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2. THE MODEL
2.1 Dimensionless Groups

Figure 1 defines the general mechanics problem: a band of inelastic deformarion emanates
from a notch in a component monotonically loaded by 6. The band 1s localized 1n that us
thickness is much smaller than any other lengths characterizing the component. The load & can be
regarded as a function of the streich at the vand-taii, 0,,; the band length L is an internal variable
to be determined by the model. The model will predict the ultimate stress, or load-carrying
capacity, &, of the notched component. The answer takes the functional form

Omax / O0=TF(ax, ¥). 2)
Also entering the right-hand side are the bridging law shape, and the ratios of a to other lengths of
geometry, such as notch root radius and panel width. The rest of this subsection explains these
dimensionless groups.

The inelasticity may be divided into that localized in the band, and that further localized at
the band tip. The inelasticity in the band is modeled as an array of springs with a nonlinear stress-
stretch relation:

o/ay=x(6/6). (3)
The dimensionless function ¥ describes the shape of the relation; the scale is set by a reference
stress, Op, and a reference stretch, §,. Figure 2 shows several bridging laws «© be used in
numerical calculations. The second mechanism is represented by a critical energy release rate at the
tip, I'y. For a ceramic-matrix composite with debonded fibers, the inelastic stretch is due to sliding
between fibers and matrix, and Iy = (1= f)T,,, where f is fiber volume fraction and T, matrix
fracture energy. For a void band in a ductile alloy, the band stretches at the expense of enlarging
voids, and I dissipates in creating new voids by inclusion/matrix debonding.

The relative magnitude of the two inelastic mechanisms is described by the dimensionless
number

Y =g/ 046y 4)
It enters (2) to determine load-carrying capacity. Two limiting cases are of particular significance.
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When y — oo the energy dissipation in the band is insignificant compared to that at the up. so that
Linear Fracture Mechanics applies. However, for composites and ducule alloys, inelastc
dissipation of the band dominates, say y< 0.1. This paper focuses on the latter case.

Outside the band, the material is taken to be isotropic and linearly elastic, £ being Young's
modulus, v Poisson’s ratio, and £' = E for plane stress and E' = E/(1 - v2) for plane strain.
The coupled substrate-spring defines a material length

0¢E'/0g. &)

This length serves as a figure of merit for the ductility of a bridging inechanism. The
dimensionless group

a=a/ (8 10y) (6)

measures the size of the notch, a. in units of the material length. Observe that « enters (2) as a

size effect.

2.2 Mathematical Description
The basic model is large-scale bridging; see Bao and Suo (1992) for references. An
inelastic band can be viewed as either a bridged crack, or an array of continuously distributed
dislocations. An inelastic band and a traction-free crack behave the same at their tips. The stress a
short distance r ahead of the band-tip is square root singular:
o,= K“p(Zﬂ:r)"”z, riL—0. (7
Here K lip is Irwin's stress intensity factor. The stretch a short distance r behind the band-tip is
parabolic:
8 =8(K,/ EYri2m)’?,. r/L—>0. ®)
This may be verified by superimposing the result for a pair of concentrated force, on crack faces
that are otherwise free of traction. Irwin's relation connects the stress intensity factor and the
energy release rate at the band-tip:

Gup=K2, 1 E'. (9)
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We will use G, and K ;. interchangeably.
An inelastic band is also equivalent to an array cf continuously distributed dislocations
(e.g., Cottrell 1963). The stress in the spring, at position x, is due both to the applied stress &.

and to the dislocation array:

gox(a / 50)—_— 6F(x/a)+.§j:+LH(x/a.§ /a)—g—g-

Here F and H are known funcrions; this intecral equation governs the smetch &x). which can

dé. (10)

be solved numerically (Gu er al. 1992).

Of direct bearing on load-carrving capacity are the tail-stretch &, and the band-tip energy

release rate Gy, (Fig. 1). Normalizing (10) by

6/06y,6/6px/a,§/al/a, (I
one finds that the answers take the forms

G/00= f(0u/8g.a. L/a). (12)
and

Gup/ O0bp = g( 8./ 6g.a.L/ a). (13)

The functions fand g will also depend on the bridging law shape y, and the ratios of a to other
lengths of geometry, but nothing else. Note that G,;, may be obtained from &(x) according to (8)
and (9).

For hardening bridging, at fixed & and L/a, & monotonically increases with &, so that
either one can be prescribed in solving (10). This is not so for softening bridging; G may first
increase with 8,,;, reaching a peak, and then drop. Thus, in general, 6,; should be prescribed in
a calculation. Given a notched component, ¢ and yare fixed; upon loading, the applied swress &
is a function of tail-stretch 8,;. The band length L, being regarded as an internal variable, is 10
be determined from (13) by maintaining G, =TI. Load-carrying capacity Gp,,/ 0y is the

maximum as §,,; varies within the range allowed by the bridging law. We therefore confirm (2).

2.3 A Simplification
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For well-toughened materials, band-tip dissipation is negligible, y =I5/ 08y « 1. A
drastic simplification is suggested by sready-state banding. When the band is long compared to

the notch size, G, becomes independent of L/a and notch shape, being equal to the

tp
complementary energy of the spring law (Budiansky er al. 1986, Rose 1987). For example,

6% = —;-0050(6'/ oo)° (14)
for the square-root law y(¢)=ve . Consequently, if ¥ = Io/ 040 is small, the band runs across
the entire component at a low load &/ 0. leaving springs intact.

The cross-component band is nonuniformly stretched, &,,;, > §, where § is related to &
by the spring law. The dimensional arzument similar 1o that leading to (12) now gives
G/0y=5(8,,/dp). (15)
Obviously, no equation analogous to (13) exists in this case. The maximum Cmax can thus be
determined as §,,; varies within the range allowed by the bridging law. The rest of the artcle will
focus on presenting results for the special case ¥ = 0, with occasional excursion to the case of
small 7, only to show the insignificance of the latter as far as load-carrying capacity is concerned.
Figure 2 shows bridging laws representative of a wide range of behaviors; their solutions
are summarized in the Appendix. A few general observations are made here. Rectilinear and
linear-softening laws cause a peculiarity; they have no complementary energy, Gy, = 0. Thus, the
band length L is finite even if y=0, and should be determined from (13).
The exponential law
0/ 04=(6/8)exp(l1-6/8¢) (16)
is taken by Needleman (1990) to represent atomic decohesion. The two reference quantities, g,
and §,. can be inferred in the usual way from measurable cohesive properties—lattice spacing.
Young's modulus and surface energy. This law is used here to illustrate all laws of this type.
First, the law has no limiting-stretch; &, is assigned, arbitrarily, as the stretch where the stress

reaches the maximum, g,. Nonetheless, §, still conveys the idea of interaction range (6~ 1 A

for atomic debond). Second, due to softening in the springs, for fixed @ in (15), & first
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increases with §_,,, reaching a maximum, and then drops. Third, uniqueness is not guaranteed
for systems with softening. In fact, for the defect-free case (& = 0). multiple solutions are found.
ranging from periodic to solitary (Suo ¢f al. 1992b). However, uniqueness seems to prevail when

a defect is present.

3. DAMAGE PROGRESSION IN CERAMIC COMPOSITES

To be definite, the model is now interpreted in the context of ceramic-matrix composites.
even though conclusions may be applicable to other inelastic mechanisms. Figure 3 is a schematic
of damage progression in a notched component under monotonic loading . A matrix crack
initiates at & = §;; prior 1o this, 8,,, = 0. For a crack-like notch, &; is governed by notch size a,
according to Griffith's formula

g,=(E'Ty/ ma)'?. (17)
This stress is insensitive to processing flaws in the matrix, so long as the flaws are nwch smaller
than the notch size.

For a circular hole, an initial flaw must be assumed in the vicinity of the hole, of size, say,
on the order of the fiber diameicr. Take the flaw to be a traction-free, penny-shaped crack of
diameter d, so that

5‘,-=%(7r£'l‘0/2d)”2. (18
This has been reduced by the stress concentration factor 3, and assumes that the fibers and mau.x
have similar elastic constants. In practice, &; may also depend on the hole radius q, for a larger
hole concentrates stress in a wider region, increasing the chance to trigger a bigger defect. Since a
» d, the cracking initiation stress is larger for a hole than for a crack-like notch. In either case,
further loading may be sustained without fiber breaking. Consequently, &, is unimportant as far
as the ultimate strength is concerned.

After extending into the component, the crack is bridged by the fibers sliding against

friction. This inelastic deformation can be represented by a bridging law (Marshall ez al. 1985)
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0/05=(818,)"" (19)

Upon assuming a deterministic fiber strength S, one has

0'0=f3. (2())
and
2 22

Here f is the fiber volume fraction, R the fiber radius, 7 the sliding friction of fiber/matrix
interface, and £, £, and Ef are Young's moduli for the composite, matrix and fiber,
respectively. In terms of primary processing variables, the material length identified in Section 2
now scales as

O0F /6= RS/ 7. (22)
Thus, the "ductility” of a composite increases with increasing fiber radius and fiber strength, but
decreases with increasing friction of the fiber-matrix interface.

In practice, the fiber strength is statistical; S is taken to be some average value, since the
ultimate stress of a composite corresponds to the breaking of many fibers. It is wrong to take & as
physical separation of the matrix crack. As pointed out by Hutchinson and Jensen (1990), &
should be inelastic deformation associated with frictional sliding—that is, total elongation of the
composite with a matrix crack minus the elastic deformation of the composite without the matrix
crack. The inelastic band consists of both the matrix crack and the frictional dissipation off the
crack plane. The above equations were derived from an approximate analysis of fibers frictionally

constrained in a matrix, and are valid when the slip length

_RE(1-f)o
l= p % - (23)

is several times fiber radius, which is typically the case in ceramic-matrix composites. Also note
that the square-root law is only valid prior to fiber breaking. Yet design with ceramic-matrix
composites may allow matrix cracking to relieve stress concentration, but require fibers 1o remain
unbroken, so that the square-root law is adequate for this purpose.

An important feature is multiple cracks. Broadly, multiple cracks provide additional

frictional dissipation sites or, equivalently, larger inelastic deformation to relieve stress

11
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concentration. As an illustration, consider multiple cracks emanating from a long, blunt notch in
Fig. 4. The matrix is assumed to be sufficiently brittle so that these cracks run across the
component at a low load without fibers breaking. If the slip lengths do not overlap with one
another and each spring is described by (19). the fracture energy is given by

= —;—0'05(;\’, (2
where A is the number of cracks, presumably related to the ratio of notch root radius over slip
length. More detailed modeling is needed to take into account overlapping slip, analogous to
models for unnotched panels by Aveston er al. (1971) and Zok and Spearing (1992).
Nonetheless, to a first approximation. the effect of multiple cracks on load-carrying capacity may

be captured by a single inelastic band with a larger equivalent &,

4. NOTCH SIZE AND MATRIX TOUGHNESS: o AND vy

Now the calculated load-carrying capacity is presented in form (2). The strength of a
monolithic ceramic is only a fraction of its bridging strength (the atomic bond), and is sensitive to
processing flaws. By contrast, the strength of a composite is close to its bridging strength (the
fiber strength times fiber volume fraction), and is insensitive to processing flaws. To understand
this difference, consider an unbridged crack of length 24, as in Fig. 5. The inelasuicity—either
atomic separation or fiber sliding—is approximated by a rectilinear law in the band. and by I', = 0
at the band tip. The standard solution is reproduced in the Appendix. Under monotonic loading

G, wae band length L is determined from (A4) by maintaining K;, = 0. The ultimate stress G ,,,

up
is reached when §,,;, = 6,. Eliminating the internal variable L from (A3) and (A4), Cottrell

i(-H—a-—}ln sec T Omay =1. (23)
T\ ok /0g ) 2 0O,

This curve is labeled in Fig. 5 bv [,/ 040, = 0. to show load-carrying capacity as a function of

(1963) obtained that

notch size.

For a tiae grain ceramic, energy dissipates to separate a few atoms at the crack tip, so that
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8cE'/0y ~ 1 nm; the flaw size is about the grain diameter, say a ~ 1 um. Consequently, « ~
10° so that &, / Og « 1, confirming that the strength of a monolithic ceramic is much smalicr
than that of the atomic bond. By contrast, for a ceramic-matrix composite, energy dissipates over
many atoms by interface sliding. say 6 £'/0, ~ 1 mm: matenal processing is unlikely to break
many fibers on the same location, so that & < 1. Consequently, the strength is close to the
limiting stress &, ~ Op = /3. and is insensitive to processing defects. This comparison reveals
the central concept of making strong materials: the limiting-strengti, for a composite is very low
compared with atomic bond strength, but amply compensated by a large inelastic stretch &
which retains this srength in the presence of flaws or small notches.

Next consider the case I3/ 038, = 0.1, which is perhaps the largest value any well-
toughened ceramic-matrix composite may assume. The lefi-hand side of (A3) equals &,/ 0o,
and the left-hand side of (A4) equals (7 / mar)"?. Thus, for fixed a and 7, (A3) and (A4)
prescribe the applied stress G / 0y as a function of §,; / &y, the band length L/a being viewed as
an internal variable. This & - &, relation is plotted in Fig. 6 for ¥ = 0.1 and various «.
Depending on ¢, the maximum, &,y / Op. is reached at either §,,;,/ 8y =1o0r 3/ 6 < L.
The maxima so obtained are plotted in Fig. 5. Except for very small q, the difference between the
two curves is small. The curve for y= 0.1 tends to infinity for small &, which is consistent with
Griffith theory. However, this difference is practically inconsequential, for it only happens for a
notch smaller than fiber diameter. Corresponding plots have been made for the linear bridging law
and for a circular hole (not shown here); the wend is similar to Fig. 5. In the rest of the paper. we

shall focus on the case I3/ 0 = 0.

5. BRIDGING LAW SHAPE
The shape of the bridging law is uncertain in practice. Fortunately, load-carrying capacity
is a robust quantity: a different ¥ only modifies it slightly, not to affect the judgement of a

designer (e.g., notch-brittle or -ductile). Figure 7 demonstrates this for a sharp notch in an infinite
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panel, and Fig. § for a circular hole. On the busis of the preceding discussion, it i sutficient o
consider the case I,/ 656y = 0, so that the inelastic band has extended across the component for
bridging laws with nonvanishing complementary energy. The curves in Figs. 7 and 8 may shift
somewhat as more accurate calculations become available. but the small difference in load-carmying
capacity for the various bridging laws may be inconsequential in practice. An explanation for such
small differences follows.
Instead of a, a modified dimensionless group, a/(E'I"/ 05), is used in Fig. 7. where I
is the energy 1o separate a unit area of the inelasuc band:
r= ooagj: x(e)e. (26)
As discussed in Section 3, the inelastic band may consists of several matrix cracks, each permitung
fibers to slide, so that &, should be regarded as the sum of all inelastic deformaton.
Two limiting cases can be solved analytically; both are independent of bridging law shape.
As a — 0. stress concentration is fully relieved—that is, G,/ 0g = 1. As a — oo, the
unbridged crack is long so that Griffith's formula applies:
-1/2
Bran/ Go=[mal(ET103)] . @7
This curve is indicated in Fig. 7, which is only valid for large a@. The mechanics problem
involved here, which consists of two elastic substrates joined by springs (inset of Fig. 7), is
different from that in Griffith's original paper. Nonetheless (27) can be confirmed by an energy
argu:nent. A simple interpolation of the two limiting cases is
w1172
G oa ! oo=[1 + m/(rE'/a;,)] . (28)
Ttis is a close approximation of the computed result for the liner law, and a fair representation of
the curves for other laws. One can use this equation for arbitrary @, as an extrapolation of the
Griffith formula (27).
Equation (28) can also be derived from an energy consideration. Under the applied load
0, the springs are nonuniformly stretched: &, > 5, where 6 and & are related by the spring

law. In equilibrium, the increment of the combined strain energy in the substrates and springs
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must vanish for any small increment of the notch size. Thus,

G()‘Suj

&,
5184

The left-hand side is the energy decrease in the springs, and the right-hand side the energy increase

n”;{(e)de ~ G| E. (29

in the substrates, for a unit enlargement of the notch under fixed load. The latter is approximate.
with relaxation due to the springs ignored. Equation (29) becomes exact as @ — oo, which
reduces to (27); and is also correct as & — 0, since 8, = & in this case. Specializing (29) for the
linear law y(€) = €, one obtains (28).

Plotted in Fig. 8 is the load-carrying capacity reduced by a circular hole, which is
constructed by using finite element solutions, discussed in the Appendix. Note that the difference
for various bridging laws is still small. and that the two limiting cases are given by (1).

Normalized as such, it appears from Figs. 7 and 8 that load-carrying capacity is insensitive
to bridging law shape. We have not carried out comparisons other than for notches in an infinie
panel. Nonetheless the normalization scheme used here separates the  ies of the shape and the
scale of a bridging law. This is of practical significance. Once charts are constructed for idealized
bridging laws with important design feawures (e.g., fasteners), a new material can be used by
fitting its bridging law to one of the idealized laws. This approach is equally valuable in design of
composites. In this phase, the detailed bridging law shape may be unknown, but the scale of the
bridging, oy and &, can be related to microstructural variables. Whether a material is viable for

a particular application can be assessed, before the material is made, by consulting the charts.

6. EFFECT OF a/w
The effect of finite panel width is studied with Iy / 69y = 0. The model consists of halves
joined by springs, with an unbridged sharp notch (Fig. 9) and a circular hole (Fig. 10).
Independent of bridging law, full notch-ductility is reached when a/(l"E'/Gg) = 0. Stress
concentration is completely relieved. so the load-carrying capacity is governed by the net-section:

G/ Og=1~a/w. (30)
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This is the straight line in Figs. 9 and 10.
Notch-brittleness prevails for large a/(I‘E'/GS). In this himit, Linear Elastic Fracture

Mechanics applies for a sharp notch, regardless of the bridgir}f_: law shape. Thus,

T =i -
O a -
LN — . (3
oy | F'E'/og

where F is a dimensionless number in the stress intensity factor for a crack in an elastic smip.

approximated by (Tada ez al. 1985)
Fla/w)= [1 ~0.5(a/w)+0.326(a/ w)2][1 ~(a/w)] "2 (32)
= -2
Fmax (1 - _a_) + 7F?

~1/2
5 ) (33)
Op w FE'/O'(S
This equation is plotted in Fig. 9, and expected to be a fair approximation for the entire parameter

An interpolation similar to (28) is

range and arbitrary bridging law, and highly accurate when a / (I'E'/crg) > 2, as inferred from Fig.
7.
For a circular hole, when a/(I‘E'/G,z,) is large, load-carrying capacity is reduced by the
stress concentration factor £, namely
G/ Co=1/k. (34)
The handbook solution (e.g. Peterson 1974) of the suress concentration factor for a circular hole in
an elastic strip, &, is indicated in Fig. 10, as the boundary of notch-brittleness. A finite element
calculation using linear springs is carried out for intermediate a / (FE '/ crg). Linearity suggests that
the stress at the band-tail takes the form
Gt = 0f (a,a/ w). (35)
The applied load & — G, when 0, = 0y, so that G, / Gy =1/ f. The calculated coefficient
fis plotted in Fig. 10. Judged from Fig. 8, the curves in Fig. 10 should be fair approximations

for other bridging laws.

7. CONCLUDING REMARKS
Notch-sensitivity can be substantially reduced by inelastic deformation. In a ceramic-matrix

composite, the inelastic deformation is due to one or several matrix cracks bridged by frictionally
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sliding fibers. The strength of nctched ceramic-matnx composites is found to depend on notch
size, as governed by a dimensionless group a /(8¢ /Tg). Notch-insensitivity is auained if the
composite is made such that a/(8F /o) <1. Itis found that the shape of the bridging law is
unimportant as far as notch strength is concerned. Although the results are interpreted for ceramic-
matrix composites, they may be applicable for other matenals or inelastic mechanisms. For
example, the notch strength presented here is the same as the residual strength of a metal-matnx

composite with a fatngue-cracked matnx.
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APPENDIX
Representative bridging faws are drawn in Fig. 2. Solutions for a hole/crack n an infimite
body are reviewed here. For the rectilinear law, the solution is linear in both the applied stress and
the closure-stress, so that
S 1a= 18~ f100. (AL
and
Kip/a = 38~ f400, (A2)

with coefficients fs depending on L/a only. For a crack-like notch the solution 1s (Tada e al

1985)
Suif’ =4(n2«1)llz[g——%cos'l(1/T])}'*-glﬂ n. (A3)
O’(ﬂ 00 n n
and
Kp 72 6 _2
=2 & _Zeos1/ 1), A4
ooV ra g ery 7 (/) "

where 11 = 1 + L/a. Coefficients for a circular hole are obtained by using finite elements (Ho
1992).
The square-root law is written
o/ 0,=(818,)"". (AS)
The solutions take the forms (e.g., Gu ez al. 1992)
Ouil/ @6y =Z(6/ aoy L/a), (A6)
with 0, being connected to J_, by the bridging law, and
Ko,/ aopa = k(G /aay L/a). (A7)
Solutions for a crack-like notch are given by Marshall and Cox (1987), Bao and McMeeking
(1992), and Cui and Budiansky (1992). Solutions for elliptic holes are given by Gu er al. (1992).
The linear law is written
6/0y=6146,, (A8)
The coupled spring-substrate is linear, so that

Ouiy/ G =g(a.L/a) (A9)
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and

K.,/ 8Vnra = g){a,L/a). (A10)

up
Solutions for a crack-like notch are given by Rose (1987), and for elliptical holes by Gu er al.
(1992).

The linear softening is an idealization of the following situation. Some bridging
mechanisms, notably ductile reinforcement, attain the limiting stress at a very smali swreich, and the
stress then drops with a long tail. The initial rising portion may be conveniently lumped into [,
leaving the post-limit tail idealized to be linear softening. The bridging law is thus

c/0op=1-6/4d. (A1)
The reward for such a simplification is that the limiting-stress, @, can be treated as a residual
stress, so that the coupled substrate-spring becomes linear, which can be solved by using

commercial finite element codes (e.g. Suo et al. 1992a). The solution is still of form (A1) and

(A2), but now the coefficients depend on both aand L/a.

21
Tuc, Dec 22, 1992




FIGURE CAPTIONS
Fig. 1 An inelastic band is viewed as either a bridged crack or an array of continuously

distributed dislocations.

Fig. 2 Idealized bridging laws.

Fig. 3 Damage progression in ceramic-matrix Composites.

Fig. 4 Multiple cracks modeled as an inelastic band.

Fig. 5 Effect of the two primary dimensionless groups.

Fig. 6 Relation between load and tail-separation (rectilinear bnidging).
Fig. 7 Notch ductile-to-brittle transition (sharp notch).

Fig. 8 Notch ductile-to-brittle transition (circular hole).

Fig. 9 Effect of a/w (sharp notch).

Fig. 10  Effect of a/w (circular hole).
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ABSTRACT
The tensile strength of a fiber reinforced ceramic composite containing a through-the-fiber

flaw in the form of a sharp crack is studied. The strength of a brittle unreinforced ceramic
containing a sharp crack of length 2a,, subjected to uniaxial load in the direction normal to the

crack plane, is given by linear elastic fracture mechanics as o, =K, /\/nag, where K, is the

fracture toughness of the material. However, for a fiber reinforced ceramic, the strength can only
be determined on the basis of a full analysis of crack growth in the matrix and the failure of crack
bridging fibers. The tensile strength of a flawed ceramic material that is reinforced by fibers
aligned in the direction perpendicular to the flaw surfaces is studied in this paper. Crack bridging
fibers are assumed to slip relative to the matrix when a critical interface shear stress is reached.
The orthotropy of the composite produced by the presence of aligned fibers is rigorously accounted
for in the analysis. The dependence of the composite tensile strength on fiber tensile strength,
matrix toughness, flaw-size, and frictional shear stress at the fiber-matrix interface is determined
and described in terms of a universal set of non-dimensional parameters.

NOMENCLATURE
2a, initial crack size
C, fiber volume concentration
A orthotropy factor (see Eq. (1))
K, matrix toughness
E.E.,E,_, Young’s moduli (composite, fiber, matrix)
R fiber radius
S fiber strength
V\V, V. Poisson’s ratio (composite, fiber, matrix)
t fiber-matrix sliding shear resistance
G, matrix cracking-initiation stress
C.. steady-state matrix cracking stress

¢S base fibers-only strength




2
A modified toughening ratio (see Eqg. (14))
(o tensile strength of flawed composite
INTRODUCTION

This paper is concermned with the tensile strength of flawed, fiber-reinforced ceramics. On

the basis of linear elastic fracture mechanics, an unreinforced brittle ceramic containing a sharp,
two-dimensional flaw of length 2a,, loaded in the direction perpendicular to the faces of the flaw,

has a tensile strength given by o, =K / 1/ma , where K, is the fracture toughness of the

material. However, the tensile strength of a fiber reinforced ceramic can only be determined by a
full analysis of a process involving matrix crack growth, frictional sliding along the fiber-matrix
interfaces, and failure of crack bridging fibers. We shall study the configuration shown in Fig. 1,
in which a large, aligned-fiber reinforced ceramic body containing an isclated center flaw of length
2a; that cuts through the fibers is subjected to uniform remote tension in the fiber direction. We
define the tensile strength as the maximum applied stress the composite can carry, and seek 10
deterr..une this stress theoretically.

As in most previous studies the fibers are assumed to be held in the matrix by friction; that
is, sliding beiwe=n the fibers and the matrix is suppressed only if the interface frictional shear is
less than some limiting stress 1. The brittle ceramic matrix is assumned 1o have a fracture toughness
K., and, except near the tip of the matrix crack, the composite is treated as a homogeneous
orthotropic elastic mecium. The effects of crack bridging fibers are taken into account by means of
a spring model that embodies the additional assumption that the frictional resistance is low enough
to permit long slip lengths relative to the fiber diameter. Failure of the composite is assumed 10 be
associated with the fracture of crack-bridging fibers in the matrix crack plane and we assume that
there is no statistical variation in fiber strength. It is further assumed that during the course of
matrix crack extension leading to the final failure of the composite, no longitudinal splitting or
shear banding takes place in the vicinity of the flaw tip. Both splitting and statistical variation ir.
fiber strength ray often be important, but we neglect them in the present study.

The mechanical behavior of both flawed and unflawed unidirectional fibrous composites
has been a subject of research efforts for the past two decades. Matrix cracking without associated
fiber failure is a distinctive tensile damage mechanism often observed in unidirectional fibrous
ceramic composites. The tensile stress required for the steady-state propagation of a single, long
matrix crack, known as the matrix cracking stress, was first evaluated by Aveston et al. (1971) for
the limits of large and small frictional shear resistance at the fiber-matrix interfaces. More recently,
Budiansky et al. (1986) extended these results to intermediate friction values. For the limiting case
of very long, initial flaws, the solution for tensile strength has been obtained by Budiansky and
Amazigo (1989) on the basis of the small scale bridging condition, wherein (see Fig. 2) the bndge




length Aa prior to fiber failure is very small relative to original flaw length 2a,. Although
Marshall and Cox (1987) have done extensive calculations for a composite with a flaw of arbimrary
length, their presentation is quite complicated and it is difficult to extract the desired gereral,
comprehensive results for the composite tensile strength from their paper.

There are many parameters governing the tensile failure of unidirectional composites, such
as fiber tensile srength, matrix toughness, flaw-size, fiber and matrix elastic properties, and fiber-
matrix frictional shear stress. We shall, however, be able to determine the composite soength 6,
in terms of just the following three basic stress quantities that suffice to characterize the flawed
composite:

* 0,, the critical applied stress for the initiation of matrix cracking;

* ©_., the steady-state matrix-cracking stress; and

* Of=C,S, the base fibers-only strength,

where S is the fiber fracture stress and c; is the fiber volume concentration. More precisely, the

ratio of G; to any one of these stresses depends on only fwo ratios of the three parameters. We
, start with a qualitative description of the matrix crack growth process that leads to failure of a
" flawed, unidirectional fiber composite.

DESCRIPTION OF FAILURE PROCESS

When a tensile stress ¢ is applied to the composite in the fiber direction (Fig. 1), failure
due to a preexisting, through-the-fibers flaw that is normal to the fibers always begins with
growth of the crack in the matrix (Fig. 2), and ends with the fracture of bridging fibers. Consider
a typical curve of applied stress 6 vs. matrix crack growth aa, shown schematically in Fig. 3.
Such a curve would be governed by the requirement that the average energy release rate along the
matrix crack front must remain equal to the critical value for matrix crack extension. In the absence
of fiber failure, a typical 6 — Aa curve has the following qualitative features. Crack growth stars
when the applied stress © reaches the initiation stress G, which is essentially a crack-size
parameter. Due to the constraining effects of crack-bridging fibers, matrix crack growth requires
increasing applied stress © until a peak value O, is reached at Aa=Aa,. Then the crack growth
continues under decreasing applied 6, which approaches the steady-state matrix cracking stress
O asymptotically for Aa — ==, (It is also conceivable that for sufficiently small values of the
initiation stress Gq, the applied stress ¢ may never reach a peak value at a finite Aa, but simply
increases monotonically as it approaches the steady-state matrix-cracking stress G,
asymptotically.) After the matrix crack extends to infinity, the applied loading is supported entirely
by the crack-bridging fibers, and the vertical line at Aa = oo indicates that further increase in © is
then possible.




Now consider fiber failure. Corresponding to each point on the ¢ — Aa curve, there 1s a
smeared-out bridging stress distribution p(x) that has its maximum value p(ag) at the original flaw
tip. Let Aagdenote the amount of matrix crack growth corresponding to the first-fiber-failure
criterion p(ag) = ¢;S, anc if Aa; <eo, let Of be the value of the associated applied load.
Similarly, for the composite containing a matrix crack that has grown to infinity from each edge of
the original flaw (Fig. 4), let O, denote the value of the applied stress © that gives p(ag) = ¢;S.
In both cases, we find that maintaining the applied load © at the value that produces the first fiber
failure results in the failure on the matrix crack plane of all the fibers. Accordingly, t .rength
o, of the composite is set by one of the following three conditions:

(i) the flaw-tip fibers fail during increasing applied stress at a value of applied stress
O < Cp and AB[( Aap; then g, = Og¢;

(i1) the applied stress reaches the peak value o, without the occurrence of fiber failure, and

G, exceeds the value of the stress Og,.  ..led to produce flaw-tip fiber failure when the crack is

intgmitcly long; then o, = G,,.

(it1) the matrix crack extends to infinity without fiber failure, and G, is less than G, ; then
G = Cme-

A complete determination of the strength of flawed composites will therefore require
consideration of both the transient crack-growth problem of Fig. 2 and the auxiliary problem of the

fully cracked composite shown in Fig. 4.

MATRIX CRACKING: INITIATION, GROWTH, AND STEADY-STATE
rack growth criterion
We shall now discuss an appropriate criterion for matrix crack growth in an aligned-fiber
composite (Fig 1). What we seek is a criterion based on the stress-intensity factor of a crack,
bridged or unbridged, in an equivalent, uniform, orthotropic (but transversely isotropic) material
(Fig. 2). Consider the plane-strain energy release rate G for a Mode-1 crack lying in the plane of

transverse isotropy. We can write
1-v?
AE

where K; is the conventional stress-intensity factor, E is the Young's modulus for longitudinal

K? (1)

g:

tension normal to the crack plane, v is the associated Poisson's ratio (for the ratio of transverse
contraction to longitudinal extension), and A is a factor that characterizes the orthotropy.  We will
assume that matrix crack growth occurs when the orthoropic energy release rate G, given by (1),
satisfies the condition

G= (l —Ct )Gm (2)

where Gy, is the critical energy release rate for fracture in the matrix, given by




1- Vz 2
Gm =—TKp (3)
En
in terms of the elastic constants of the matrix and its fracture toughness Ky,. The factor (1-c¢)

accounts for the reduction in length of the edge of the marrix crack due to the presence of the
aligned fibers. It follows that the critical orthowopic stress intensity factor K, for matrix cracking

in the direction perpendicular to the direction of fibers in unidirectional fibrous ceramic composites
is

AE(l - vﬁ,)
Em(l-vz) :
The magnitude of A as a function of the plane-strain compliances of an orthotropic material
follows from the formula given by Tada et al (1985) for the energy release rate (see Appendix A).
If weletE, E;, and E, be the Young's moduli of the composite, fiber, and matrix, respectively,
and if we assume, for the sake of simplicity, that fibers and matrix have the same Poisson’s ratio
Vi =v_ =V, then E is given by the rule of mixtures formula E = c(E; +(1—¢{)E,. The
dependence of A on E¢/E; and ¢{ for v; = v, = 1/4 has been calculated on the basis of the Hill
(1965) self-consistent estimates for the effective compliances of an aligned-fiber composite having
isotropic constituents, and the results for A vs. ¢, are plotted in Fig. 5a for various values of
E(/E., > 1. (These curves, and the associated formulas shown in Appendix A, correct errors in

Kic = ~¢r)Kn (4)

the earlier work by Budiansky and Amazigo (1989)). Fig. Sb shows A for several values of
E;/E, <.

It is important to note that the parameter K¢ is a material property of the composite which
encompasses information about matrix toughness, fiber volume concentration, the orthotropy
induced by unidirectional fiber reinforcement, and the moduli of the matrix and composites. In
order to analyze the matrix cracking problem illustrated in Fig. 2, we will be calculating the
orthotropic stress intensity factor K; in the presence of both external loading and crack bridging
fibers, and then using K; = K¢ as the criterion for matrix crack growth.

atrix king initiation

For the special case of matrix cracking initiation in the configuration of Fig. 1, we can use
the familiar formula K; = 6./nay , which is valid for any anisotropic as well as isoropic 2D elastic
body (Sih et al,, 1965). Setting K; = K;c gives the matrix crack-growth initiation stress of the

composite -- one of our three basic stress parameters -- as

Go = Kic/mag &)
Thus 69 may be regarded as a crack-length parameter, decreasing like 36” 2. Note oo, that for
Vi = V,, =V, the initiation stress oy is related to the corresponding strength 6y of a unreinforced,
cracked monolithic ceramic of the same crack geomenty by




O (6)

Matrix crack growth
Equations connecting the applied stress, the bridging-fiber stress distribution, and the

matrix crack extension in the absence of fiber failure (Fig. 2) are presented in Appendix B. In this
formulation the orthotropic stress-intensity factor is kept equal to K¢, and the smeared-out
bridging fiber stress p(x) is related to the displacement v(x) of the upper crack face (Fig. 2) by

p(x) = B+/v(x) (7
where the equivalent spring constant B is given by
)
42E.E2r 12
B - CfEfE2 Tz (8)
R(l - Cf) Em

This relation follows from the assumption of “"large” slip lengths adjacent to the crack faces and
neglect of initial stresses (Aveston et al 1971, Budiansky et al 1986; Budiansky and Amazigo 1989;
Hutchinson and Jensen 1991). Various non-dimensional forms of the governing equations and
their numerical solution are discussed in detail in Appendix B.
Steady- . i

As already mentioned, when the matrix crack extension becomes large, the applied stress ¢
approaches the steady-state matrix cracking stress of Aveston et al (1971). Under the assumptions
adopted, the steady-state matrix cracking stress Omc is given by

1
6c?(1-v2)K2E P g
o'mcz[ f( m) = &)

1-¢;)RE E_
( f) m

where R is the fiber radi.s and t is the interface slipping shear resistance stress. This is the
second of the three basic stress parameters that define the composite; the third one, we remind the
reader, is just Gg=c;S.

MATRIX CRACK GROWTH AND PEAK STRESS
The analysis and calculations described in Appendix B provide the connections berween the
applied stress ¢ and the matrix crack extension Aa (Figs. 2-3) shown nondimensionally in Fig. 6.
(These relations assume no fiber fracture, and so the basic stress parameters ¢S is not involved.)
The abscissa 0¢/Onc is a measure of the original flaw size. Note that for Aa/ag >.5 the curves
giving O/Cmc VS. 6¢/Omc Cross each other in the vicinity of 6¢/0p,=.95. It follows that the peak




stress ©p during crack growth (see Fig. 3) musi occur for Aag/ag > 5 whenever the flaw size
corresponds 10 6/0m: < .94; but for 0¢/Oryc > 1, Aap/ag must be less than 0.5!

As discussed earlier, the strength o of the flawed composite will, for some parametric
ranges, be equal to the peak stress O, attained during matrix crack growth (Fig. 3). The results for
Op obtained from the solution of the crack-growth equations are completely described by the curve
in Fig. 7, which shows 0,/0mc as a function of 0¢/Omc. (This curve is actually the upper
envelope of the family of curves in Fig. 6). Note that o, is almost always very close to either o
or Omc.  The accuracy to which we could calculate 6, was much better than that of the associated
values of Aa,. It may be that for sufficiently small values of Op/Omc, Gp becomes equal 10 Opyc,
corresponding to a monotonic increase in the value of the applied stress as the matrix crack grows
to infinity (see Fig. 3); but the numerical calculations do not resolve this point. In any case, this is
not important, and, as we shall see, parametric ranges for which the strength o; is given by o,
turn out to be small.

FULLY CRACKED MATRIX: AN AUXILIARY PROBLEM FOR Gfm¢
We will find that there are significant ranges of the ratios of the three basic stress
parameters for which failure of the flawed composite occurs only after the matrix crack has become
infinite, and then G, equals the strength O of the fully cracked configuration sketched in Fig.
4. Clearly, 6 is independent of the fracture toughness Ky, of the matrix. But because of the
bridging-fiber stress concentration induced at the edge of the original through-the-fibers crack,
Ofmc Suffers a reduction from the base fibers-only strength ¢S it would have if the flaw were
absent. An integral-equation formulation for the calculation of Gy is given in Appendix Cin
terms of the non-dimensional combination
I - ay1
a0=:f—s?0-=a[-ﬁ§~] (10)
of the basic stress parameters, where
= | SR o
A(l=c)YEg

The parameter 3, independent of K,,, may be regarded as a measure of the original flaw size.

The solution found numerically for O5,c/(c(S) as a function of this parameter is shown by the solid
curve in Fig. 8". A remarkably accurate approximation to this result is given by

* See Suo el al (1992) as well as Bao and Suo (1992) for the results of similar calculations based on other bridging
laws, and suggestions concerning the possibility of unifying these results over a wide range of bridging laws via

encrgy concepls.
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o= —me =o| Jme | _| Sfme (12)
CfSO'a Cfs c;S

which provides the dot-dash curve in Fig. 7. This formula was discovered fortuitously, and we
have not found a persuasive way to denve it.

STRENGTH O5: RESULTS AND DISCUSSION

We can now put together the final results for the strength ¢, of the composite in terms of
the basic stress parameters Oy Omc, and ¢S, and we will display these results in several different
forms to bring out various trends. By monitoring the magnitude of the bridging-fiber stress at the
onginal flaw tip during the matrix crack growth, as calculated from the analysis of Appendix B, the
magnitude of the load o¢corresponding to fiber failure during this growth has been determined,
and, on the basis of the discussion given in the earlier description of the failure process, the
appropriate choices have been made for the assignment of Oy, G, OF Ggmc to the strength 65 This
has been done on the basis of various non-dimensional forms of the goveming equations,

described in detail in Appendix B.
One nondimensional form of the results for o is
i’i.—.}:,(—cfs ;-90—] (13)
o) Omc Ome

where /0, may be regarded as a modified strengthening ratio provided to a flawed ceramic by
aligned-fiber reinforcement. (The actual strengthening ratio is 3,/G50, to which Oy/0y (see Eq.
(6)) is a fair approximation.) We prefer, however, to introduce the parameter

N3
A= |1+ 2(&5) (14)
Gmc

in lieu of ¢fS/0m, in exhibiting the results for the strength of the composite, and we have done so
in Fig. 9, where we show curves of 0,/6p vs. A for various values of Gy/Gp.. The quantity A is
the modified toughening ratio K/Kjc found by Budiansky and Amazigo (1989) for the case of
small-scale bridging. The significance of A is that it provides the modified strengthening ratio of a
composite containing a very long initial crack, which corresponds to a very small value of 6y/Cp,c.
Thus, 6/0p=A for 6p/6m=0, and this is an upper bound to 6,/0; for all finite values of Gy/Gp..
In effect, the sequence of curves in Fig. 9 shows quantitatively how much the small-scale-bridging
strengthening due to aligned-fiber reinforcement is reduced for flaws of decreasing size.

As indicated by the key to the line types in Fig. 9, the strength G, at each fixed value of
00/Omc. always starts out equal to O¢ 2t low values of A; for a sufficiently large value of A, this
first range, associated with fiber failure during matrix crack growth (Fig. 3), merges into a
generally small interval in A for whick G is given by the "peak” stress ©,: and then, beyond

.




another critical value of A, failure at G,=Omc in the fully cracked matrix becomes the rule. Note
that because 0¢/Omc does not depend on S, each of the curves of Fig. 9 can be interpreted as
showing the influence of fiber strength on the composite strength.

The results for g, have also been computed in the form

.gs_zpz(_.cfs;EéJ (15)
Go Ome¢ Oo

and Fig. 10 shows 6/Gp vs. A for various fixed values of ¢¢S§/6¢, which may be regarded as a
crack length parameter that is an increasing function of the initial flaw size. Since ¢(8/6¢ 15
independent of the shear stress 1, each curve in Fig. 10 shows how the fiber-matrix interface
friction affects the swength. The matrix cracking stress Gpy is an increasing function of 1 (Eq.
(9}), and therefcre the small-scale-bridging toughening ratio A gets larger as T goes down. The
curves in Fig. 10 show that for flaws of finite size the strengthening generally remains an
increasing function of 1/1, except for some insigunificant isolated parametric ranges.

In both Fig. 9 and Fig. 10, displaying the ratio 6/6¢ as the dependent variable provides
the answer to the question: how much has the flawed matrix been sirengthened by aligned fibers?
An alternative viewpoint is to contemplate the base fibers-only strength Og=cS as a starting point
of reference, and study what happens to the ratio 6/ ¢S under the degrading influenc~ of a flaw
and the reinforcing presence of the matrix. A useful representation of the results is in the form

o o). o

as shown in Fig. 11. The abscissa 3, is a flaw-size parameter that is independent of the matrix
toughness Ky, and the increasing values of 0,./cS labeling each curve reflect increasing values
of K. The curve for opmc/cS=0 reproduces the one in Fig. 7; for Kn=0, the matrix will crack out
to infinity as soon as load is applied, and then the strength will be given by Gnc. The curves in
Fig. 11 show that Oy constitutes a lower bound to the strength, and that for reasonable finite
values of Onc/(c,S) only modest increases above this value are obtained. In terms of the parameters
of Eq. (16) and Fig. 11, the identity of the failure mode can exhibit a curious progression. Thus,
for om/cS=.75, O is given by o5 for large flaw size; then, as a, decreases, 0,=0p, over for a tiny
interval of the abscissa; this is followed by 0,=0(m. along the bottom curve; and finally, below a
cntical value of flaw size, ;=0 again. Actually, values of the abscissa much below unity are
unlikely to be in a practical range of interest.

The formula (12) suggests that the results of Fig. 11 might usefully be replotied as shown

in Fig. 12, wherein 04/(csS) is shown over the full practical range of (3, )’”2. Note that for

Omc/cS greater than some critical value between .75 and .85, failure always occurs during finite

extension of the matnix crack.
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NUMERICAL EXAMPLES
To provide some quantitative feel for the theoretical results of Figs. 9-12, we
present a set of numerical examples for a well-documented ceramic composite sysiem that was
used in matrix cracking experiments by Marshall et al (1985), consisung of silicon-carbide fibers in
a lithium-alumino-silicate glass matrix. The nominal values of pertinent parameters were

c; =05 R=8um
v, =v; =025 K,, =2 MPa-m”
E, =85Gpa |~ [ 14-5CFa S=1GPa
E; =200 GPa 1=2 MPa

On the basis of this data, we get
A=095 o,.=265MPa A=38

Table 1 shows the strength predictions of the present analysis, for several values of flaw
length 2a, and the corresponding values of G, c/S/06p, and 3;. Numencal results for o, are

given, as well as the ratios 64/0p and 64/(c;S); the failure type (i.e., G, Gp. OF Oy} is listed.

TABLE ]
2ap(um) | 69 (MPa) | ¢S/0g ag o, MPa) | o/0¢ | 64(c(S) tvpe
32.5 250 2 0.60 415 1.7 0.83 Cfme
130 125 4 2.38 319 2.6 0.64 Gime
290 83.3 6 5.36 257 3.1 0.51 O
520 62.5 8 9.53 213 34 0.43 O¢

In these examples the strength o of the unreinforced ceramic is about 10% higher than og
(Eq. (6). Thus, the composite containing a flaw (or sharp notch) about 1/2 mm in length is
strengthened considerably (by about a factor of three) by the presence of aligned fibers that do not
bridge the initial flaw. But the failure mode, of the O; type, rema:ns catastrophic, occurring before
the onset of widespread matrix cracking at Op. In contrast, the strength of the matrix with the
smallest of the flaws considered above is increased by only about 50%, but this is enough to raise

O, above Op,.

COMN  UDING REMARKS
Our study has produce. :aeoretical results fcr the tensile strength of a flawed,
aligned-fiber ceramic composite in succinct non-dimensional forms that encompass the effects of a
large number of geometrical and physical vanables. The results for the strength o, displayed in
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terms of three basic characterizing reference stresses Gg, Ome, and ¢S in Figs. 9-12, may provide
a basis for the micromechanical design and analysis of such materials, as well as for the
formulation of design criteria. A useful lower bound to the strength o is given by the post-mamix-
cracking failure stress Ognc provided by Fig. 8.

The present study provides a sound foundation from which to proceed to elaborauons that
include the effects of initial stress and statistical variations in the fiber s-cngth. The laner. in
partucular, can lead to intra-matrix fiber failures at locations off the crack faces, and the consequent
higher fiber-pullout lengths during failure can produce substantial increases in predicted composite
strengths (Thouless and Evans 1988). However, the extent to which design should rely on
beneficial effects of statistical dispersions in fiber strength remains an open question. Finally, it
should be emphasized that the possible intervention of failure modes not considered here, such as
longitudinal splitting or shear localization, requires investigation.
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APPENDIX A
ORTHOTROPY FACTOR A

This Appendix corrects the one with the same title in the paper by Budiansky and Amazigo
(1989), in which several blunders occur.

We consider a transversely isotropic, orthotropic elastic material satisfying the stress-strain
relations
¢, =0,/E~vo, /E-Vo,/E

€y =~v0,/E+0,/E-vG,/E
« = = (A1)
€, =-Vo,/E-vo,/E+0,/E

(Yay =Ty /G

According to Tada et al (1985), quoting results of Sih et al (1965), the plane-strain energy release
rate at the edge of a mode-I crack lying in the ransversely isotropic x-z plane is

G = CK? (A2)

where

- 12
C=\/A11Azz An  2An+ Ak (A3)
2 A 2A,

and the A;; are defined by the plane-strain constitutive relations
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Ex = Anox + Alzﬁy

E), = AIZGx + A220x (Ad)
ny = A661xy
The Aj; are given by
-2 -
1-V v(1+V) 1-v°E/E 1
Ayp=—=—. = - , =E—, A== (AS)
11 3 12 E 22 E =G
Hence, in the representation
(1-vH)K?
= (A6)
§ AE
we have
1-v?
CE

For the aligned fiber composite, the elastic constants E, E, G, V have been calculated for the case
V=V=v,, in terms of ¢¢, Ep, and Ey, and the resulting dependence of A on ¢y is plotted in Figs.
5(ab) for various values of E; /Ep,.

APPENDIX B
FORMULATION AND NUMERICAL SOLUTION FOR MATRIX CRACKING INITIATED
FROM A CRACK-LIKE FLAW
Formulation
This section details the formulation of an integral equation and an associated scalar equation
for matrix cracking that is initiated from a preexisting flaw. The matrix crack together with the
original flaw is modeled as a crack of length 2(ag -+ Aa) (see Fig. 2) with a cohesive, bridged zone

of length Aa at both ends. The upper crack face displacement is

x,+A2
v(x)=‘_2£l_A_I:_)o\/(ao+Aa)2—x2—z(-:t% p(§) Io j(—o N ://30:23 zzidé
ap + al ‘-X - ao a 5
3
(BD)

Except for the factor A, the first term is the standard crack face displacement due to remote uniform
loading of an isotopic material. The second term is the crack face closure displacement due to the
bridging stresses, and, again except for A, is obtained by superposition of the crack face
displacements due to concentrated loading on crack surfaces given by Tada et al. (1985). The
orthotropy factor A, defined by Eq. (1) in terms of energy release rate. correctly takes orthotropy
into account in this expression for displacement. (This can most easily be shown by weight-
function considerations.) An integral equation for p(x) may be obtained by equating v(x) in (B1)
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to [p(x)/B]? in accordance with the bridging law (7), and then differentiation with respect to x

gives
ag+As >
(x) _ 2B%(1 - v?)x \/(30+A3) - E? ¢ g, MO
pl« ) g - > 3 P(s)ds*'i"
X nAE (a04-Aa) - g X
39
for ag<x<a,+a (B2)

A scalar equation that must be satisfied simultaneously with (B2) is obtained by asserting that the
orthotropic stress intensity factor Ky (which depends on ¢ and p(x) in the same way as for
isotropy) must remain equal to Kjc. Hence (Tada et al, 1985)

s, +A8

K; = 0,/(ag + Aa) - ,/30“““ j px). -dx=Kyc (B3)
\f (ag + Aa - x?
By making the substitutions
=(ag+Aa)s  p(x)=0,q(s)
1 (B4)
(1‘—’@7;; c=20mc 00220°mc

one may express the governing equations (B2) and (B3)in the normalized forms

dq(s)  4fy(s) || n
V1-35q(s) s =—3n210.2(2) [{fz(t,s)q(t)du-z-}l} for a<s<l (BS)
1
Z—%IG(S) q(sids =V Z, (B6)
a

where

fl(y)=T);=;‘ fz(t S) T—T_ and f3(S) 7}-:;:* (B

For assigned values of o, Egs. (B5) and (B6) can be solved for £ and q(s) versus Lo, and thereby
provide the results of Fig. 6, and the curve for Op/Omc in Fig. 7. The condition of fiber fracture at
x=ag 15 q(1)=cfS/0m.. Hence, for given values of Ig and ¢(S/Gmc, Eqgs. (B5) and (B6) can be
solved (by a Newton-Raphson technique) for the corresponding distributions p(s) and magnitudes
of a and Zf=0(/Omc at fracture, and then the points for O/00=01/00=L/Z¢ on the dot-dash curves
of Fig. 9 can be plotted.
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To get points on the dot-dash curves of Fig. 10, we assign values of ¢(S/6p as well as
¢{S/0mc. Teplace o in Eqgs. (B5) and (B6) by the ratio of these quantities, and similarly solve for
p3

Finally, to plot the curves for 6,=G¢ in Figs. 11 and 12, it is convenient to renormalize the

goveming equations by letting

3
ry Ome = p(s) 5 o
3y = —14 )=t L= — (BS)
0 CfSGQ Q( ) CfS CfS

to get

dq(s)  4f,(s)a | | e
VT=sg(s) 22 = - 1500 [Hsqwdi+ = for ass<l (B9
ds In‘a 5 2

51 o %
f—-—Jﬁ(s)ﬁ(s)ds:(—-ﬁ) Ja/d, (B10)
ﬂu CfS

The fracture criterion is now §(1)=1, and so, for assigned values of 3, and Onc/(csS) the
magnitude of I, = Z;corresponding to this condition can be found from Eqs. (B9) and (B10).

We omit a detailed description of the fairly straightforward procedures used 1o plot the
curves in Figs. (9-12) corresponding to the results in Figs. 7 and 8 for Op and Ofmc.
Numerical procedure

This section describes the numerical procedure used to solve Egs. (BS) and (B6) for q(s)
and I; the method is equally applicabie to Egs. (B9) and (B10). Make the substitutions

= %[(1 +o)+(1-a)z} t= -;—[(1 +a)+(1-a)] q(s(2)) = Q(2) (B11)
in Egs. (B9-B10) to get
wflT'z_Q(Z)g%iz—) = —g%% -1—'—2'2{1;—& ifz[t(C),S(z)]Q(C)dC + ;—E} (B12)
for -1<2<1, and
- -1-?1-{5 j[f3[s(z)] Q(z)dz=+aZ, (B13)
Note that the displacement v o< 4/1-2 nca; 1z=1. and since Q e /v it is appropriate to write
Q)=(1 —z)xiak'fkq(z) (B14)

where Ty(z) is the Chebyshev polynomial of the first kind of degree k. For given values of a, and
%y, the M coefficients a,, together with the additional unknown I, were determined by

collocation of Eq. (B12) at the M points

nr
= =12,..
z, =Co M+1) (r=12,.M) (B15)




16

and enforcement of Eq. (B13). The definite integrals with respect to z in (B12) and (B13) were
evaluated by means of the general Cauchy-Chebyshev formula (Erdogan and Gupta 1972)
1

M+l F
J FCd = Cp) (r=12,..M) (B16)
1(Zx'§)\/l"§2 M+l 26

and the standard Gaussian integration formula
1

F(z)dz n Mz“
= F(z,) (B17)
_ 2 +1 P
__]\[l z
where
2,=4,= cos{i-(z—z&——:-)%} (P=12,...M+1) (B18)

A Newton-Raphson iterative scheme was used to find solutions for the a,'s and X, with
convergence specified by a relative change of less than .01% in the values of each of the unknowns
in successive iterations. The physical argument that for a long matrix crack the applied stress ¢
should approach the steady-state matrix cracking stress Omc provides a consistency check on the
accuracy of the numerical solution. It was found that with M between 40 and 60, the consistency
check was always satisfied to within about 0.1%.

APPENDIX C
AUXILIARY PROBLEM FOR Ofmc
We can obtain an integral equation for the auxiliary problem of Fig. 4 by letting Aa — o in
Eq. (B2). The resultis

d _2p*-
p(x) p(X) B ( Y )f 3 2p(§)d5 for ag<x<eo (Ch
dx & -
dp
By making the substitutions shown in Eq. (B7), together with
X = agy (C)
we obtain
g( )dq(y) ‘“‘gj » Y xq(M)dn for 1<y<eo (C3H
3t )n" -y
1

Note (Fig. 4) that under the applied stress o, ﬁ(oo)=0/(c,S)=f, and the condition for fiber

fracture at the original flaw tip is given by
g =1 (C4)
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3
Accordingly, for assigned values of 3@ = is‘“%, the solutions q(y) of (C3) that satisfy (C4)
€(30¢
provide the associated values of () = Z; = G, /(c;S) needed to plot the solid curve of Fig. 8.
The transformation

y=l4— (C5)
1-w

may be introduced 1nto (C3) to map the infinite domain into the interval (-1, 1). The subsequent
numerical procedure used to calculate ff versus 3, involving expansion of § in Chebyshev

polynomials and Newton-Raphson iteration, was basically similar to that outlined in Appendix B.
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Fig. 1. Inital through-the-fibers crack-like flaw.
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Fig. 2. Matrix cracking initiated from flaw tips.
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Fig. 6. Applied stress for various amounts of matrix crack growth.
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Fig 9. Modified strengthening ratio 64/ for various values of G¢/Omc. The parameter A is
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MECHANICAL BEHAVIOR OF A CONTINUOUS
FIBER-REINFORCED ALUMINUM MATRIX COMPOSITE
SUBJECTED TO TRANSVERSE AND THERMAL LOADING
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Santu Barbars. CA 93106, US A
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ABSTRACT

THE TRANSVERSE praperties of an aluminum alloy metal matriy composite reinforced by conunuous aluming
fibers have been imvestigated The composite 1s subjected 1o both mechanical and cvclic thermal foading
The results of an expenimental program indicate that the shakedown concept of struciural mechamos
provides a means of describing the matenal behavior. When the loading conditions are within the shake-
down region the materia) finally responds in an elastic manner after imtial plastic response. and for
loading condinons outside the shakedown region the material exhibits a rapid incremental plasuc strain
accumulation. The failure strain vanes by an order of magmtude according to the operating conditions
Hence for high mechanical and low thermal loading the lailure strain 1s small. while for low mechanical
and igh thermal loading the ©~ure strain 1s large.

I. INTRODUCTION

THE POTENTIAL for weight and strength advantages of components made of metal
matrix composites is the consequence of the anisotropic properties of the composite.
That advantage is diminished. or is even lost, for laminates with a less marked
anisotropy. Consequently. if full advantage is to be taken of the dominant strength
characteristics then the fibers should be oriented in the direction of maximum stress
transmission. In this circumstance the transverse properties of the composite are
critical since there must be sufficient strength in the matrix to carry the secondary
stresses applied in the transverse direction.

The transverse properties of a metal matrix composite consisting of an Al-Li alloy
matrix reinforced with continuous alumina fibers are investigated in this study. An
important characteristic of this material is the combination of a strong bond at the
fiber-matrix interface and a ductile matrix. There is also a large mismatch in the
coefficient of thermal expansion of the fiber and matrix so that fluctuations in oper-
ating temperature induce thermal stresses in the composite. It is the goal of this study
to determine the behavior of the composite when subjected to mechanical and thermal
loading with special attention given to the transverse properties. The properties in the

593




594 S Janssos and BOA Lioan

fiber direction dre the subject of another study. As 4 result of this study 1t s posable
to deseribe the behavior of the composite i terms o the shakedonn coneept used 1n
structural mechames, and 1t v also possible to develop a rather seumiple method tor
estabhishing the constitutive equations tor use n structural calculations

2 Eaerrivintal PRixGRAM

The composite studied 1> Du PontUs FPATECHAMPION cr ¢/ T8 0wath continuous
fibersan o umdirectuonal fuy -up The fiber solume fraction was determined (o be $3%
The FP tiber consists of 9990 pohveryatalline 2-atumima (AL O coated with sihes that
improves Jhe strength of the fiber and mds the wetting by the molten metal The hbers
have a diameter ol approximatels 20 um. a modulus of 345 380 GPu.a tensile strength
of 1.9 2.1 GPa for 6.4 mm gauge length, and a fracture stram of 65 0.4% The
matrix material 15 a 2 wi®e L1 Al binary allos. The hithium promotes the wetung of
the alumina fibers that forms a strong matnx fiber interface and 1t also rases the
modulus and decreases the density of the aluminum. The composite s fabncated by
preparing the FP fibers into tapes by using a fugitive binder and the tapes are
subsequently laid up in a metal mold in the desired orientation. The binder s burned
away and the mold 1s vacuum-infiltrated with the molten matnin. The composite was
available in the form of a plate 150 % 150 = 12.5 mm thick.

The specimen used in the test 1s shownn Fig. By Tt has a refatively large radius
at the transition from the gripping section to the reduced-gauge sectton to provide a
low stress concentration and a short gauge length for efficient use of the material. The
specimen was loaded in a servo hydraulic machine and heated by means of inducuon
coils [Fig. 1(b)], and the strain was measured with an extensometer with 3 87 gauge
tength. The temperature was measured by using three type K thermocouples mounted
at the center and at the ends of the gauge section. The center thermocouple controlled
the temperature while the top and botiom thermocouples were used to measure the
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FiG. 1. {a) Specimen geometry. (b) Expenmental setup.
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variation of temperature along the length of the specimen. The vanation of tem-
perature with iime and space 1s shown in Fig. 2. The spatial temperature distribution
is shghtly different for the heating and coohng parts of the cvcle. It was not possible
to adjust the coil to have a uniform 1emperature distribution over the whole cvele. It
was therefore adjusted 1o have a minimal spatial vaniation over the cyele. A computer
was used 1o control the tests by generating command signals for load and temperature.
and to perform data acquisition.

The tests reported in this study invoived a constant transverse stress in combination
with cycles of temperature with heating rates of 0.7 Cis that give cycle times of
approximately 150 s. Because of the limited availability of the composite only one
specimen was used for each transverse stress level. The specimen was loaded and
subjected to cyclic temperature and the ratcheting rate was measured when the steady-
state condition was reached. The cyclic temperature range was then increased and the
next rate was measured on reaching the next steady-state condition. The temperature
and strain variations were continuously recorded. Examples of recorded strain in the
direction of the applied stress are shown in Fig. 3.

3. EXPERIMENTAL OBSERVATIONS

Transverse stress—strain curves at room temperature are shown in Fig. 4. from
which a deviation from lineanty is observed to occur at 75 MPa. The ultimate strength
is 200 MPa and the strain to fracture is 0.8%. The ultimate strength is about 50%
higher than the ultimate matrix strength while the failure strain of 0.8% is only 3%
of the 30% failure strain of the matrix (Saku1 and TAMURA. 1969).

Representative results for operating conditions in excess of shakedown are given
in Fig. 3(a) for a low transverse stress and in Fig. 3(b) for a high transverse stress. In
both cases transient behavior is followed by a cyclic response for which there is an
increment of strain after each cycle, i.e. ratcheting occurs in both examples. For the
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(a)

{b)

F1G. 3. Accumulation of plastic strain: {a) tow transverse loading. (b) hagh transverse loading

Fic. 4. Transverse siress strain curves for different matnix behavior.
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low transverse stress the transient portion is completed after one cycle [Fig. 3(a))
whereas in the case of tl-e high load the transient behavior continues for 40 cycles
before a steady-state condition is reached [Fig. 3(b)}.

Similar tests were performed at different values of constant transverse stress and
temperature cycles. In Fig. 5, the steady-state strain range At recorded over a cycle
of temperature is plotted as a function of the temperature range AT for different
values of the transverse stress ;. It may be inferred from this plot that the cyclic
strain is independent of the level of the transverse stress and is linearly dependen: on
the temperature range AT. Some of the samples have a higher strain range close to
fracture.

Contours of constant values of steady-state accumulation rate of de,/dN, where g,
is the plastic ratchet strain and N the cycle number, are plotted in Fig. 6 as a function
of the thermal and mechanical loading. There are combinations of ¢, and AT for
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Fii 7. Steads-state ratcheting rate as a tuncuon of the distance from the shakedown surface

which no ratcheting occurs and after an imitial (transient) response the cvelic material
behavior is elastic. This condition is indicated in Fig. 6 as the shakedown condiion
(Ce, cN < 10 *). When the operating conditions exceed the shakedown condition
ratcheting occurs at rates indicated in Figs 6 and 7.

The contours of constant ratchet strain rate plotted in Fig. 6 are generally paralie!
to the shakedown surface. This observation suggests that the force ff which drives the
ratchet strain rate is given by

.
p=2" 4, &t
T, o,
where T, and g, are the ordinates defining the shakedown condition. The relationship
of de, dA has the form

de,
iN = S(B). (2)

where f(f) ha: the form given in Fig. 7. The reiationship is exponentially dependent
on f for the present range of B and can be written as

J(B) =exp(9.5x10°p)—1

The failure strain is dependent on the operating condition as indicated in Fig. 8,
The failure strain was 0.8% for high stress and low thermal load whereas for a low
transverse stress of 30 MPa the failure strain reaches 12%. Microscopic observations
of specimens subjected to low transverse loading and with large failure strains [Fig.
9(a)] showed distributed damage in the form of small cracks over the whole gauge
section. The cracks are initiated from areas with poor matrix infiltration and locations
with closely spaced fibers. The macroscopic fracture surface is wavy. A high-
magnification view [Fig. 9(b)} indicates a ductile fracture in the matrix with extremely
oblong voids. It appears that the iritial fracture is close to the fiber-matrix interface
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(a} a low-magmfication view showing the

distributed cracking in the sample. (b) a close up indicating 1nitial fracture close to the fiber-matnx

F1G. 9. Typical fracture surface for low transverse loading

interface.
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on planes perpendicular to the loading direction and that the final fracture consist.
of a ductile fracture in the remamng matnx hgaments between the fibers.

The fracture for high transverse loading and small failure stratn [Fig. W) s
localized to one narrow band oriented approximately 45 10 the loading direction.
The fracture surface [Fig. 10(b)] also indicates that the fracture s governed by a
ductile matnx failure. However. the fracture does not approach the fiber-matrix
mterface as for the low transverse loading and .t appears as if the whole load carryving
capacity of the matrix has been lost at the same time. These observations suggest that
the fatlure mechanism in the matnix is associated with void growth.

4. COMPUTATIONAL STUDIES

By using the theory of homogenization in conjunction with finite-element pro-
cedures an attempt is made to determine the mechanics that governs the behavior of
the composite in terms of the properties of the fiber and the matnix.

The present composite consists of long fibers in a unidirectional lay up that are
randomly distributed in the transverse plane. In the model to be analvzed the fibers
are assumed 1o be long parallel cylinders arranged in a hexagona! array [Fig. 11(a)].
This periodical array has the mechanical properties with the closest symmetries 10 a
composite with randomly distributed fibers. Both systems are transversely isotropic
when the constitutents are linear elastic but the hexagonal array has a weak deviation
from transverse isotropy when the matrix exhibits a nonlinear stress strain relation
(JanssoN, 1990a). The deviation is most pronounced for a perfectly-plastic matnx.
However, reasonable results can be expected if effective properties are calculated for
loadings that do not permit slip planes unconstrained by the fibers.

The governing boundary value problem for the effective properties of the unit cell
1s two-dimensional and has been solved with the finite element method by using
ABACUS (1988). A 10-node biquadratic quadrilateral generalized plane strain
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(b}
(3) . s
; 7
N
20
4
o 23— y

Fro U Gt Hexagonal array with unit et indicated  thy Finite ciement mesh

element with reduced integration was used 10 avoid locking. The considered oading
of the unit cell [Fig. 11a)} s symmetric with respect to the 1 - and v.-axes. Thig
implies that only an eighth of the indicated unit cell in Fig. 1a) need be analvzed.
The mesh shown in Fig. 11(h) is subject to the following in-plane boundary conditions
for the tractions 7, «nd Gisplacements u, on the boundary §:

3 b 3obh) b
T,(\>2 h‘-2+c>=T,(\5 h.,—c). 0<ex

- -

u (v, =0)= —u.(r. = h)=constant so J T.d5- ‘ 7.d§ = 0.
c=0

diamh
3 I o
ufy, =0)= - 7‘"’(51)- b nrl dS = - (o>,

where (7} is the average stress and (¢,) is the average strain in the 1-direction. The
generalized plane strain condition gives
€, = constant  so ’ r,ds=0.
vi=0
A detailed description of the derivation of the boundary conditions for different
loadings is given in JANSSON (1990a).

The elastic properties of fiber and matrix are not greatly affected by the history of
processing and keat treatment of the composite so that it is possible to use data from
Lue literature. However, the flow properties of the Al-Li matrix alloy are strongly
dependent on the histories of heat treatment and cotd-working (STARKE ¢1 al., 1981 :
Saku1 and TaMURraA, 1969). Details of the processing of the composite and of any
post-heat treatments are not available. Hence. the exact state of the matrix is not
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known und it s not possible to determine the flow propertes of the matrix from the
Iterature The onlv means of estimating the flow propertes of the matrny of the
compostte 1s to select matnx properties so that the calculated response fits the exper-
imental stress strain curve for the composite. This procedure has been performed by
Jansson (1990b), who demonstrated that the matny properuies obtained from one
stress state could be used to predict accurately stress stram refationships for other
toading states The iial vield stress of the matrix was determined to be 94 MPa with
a hurdening exponent # = 3 (kg 4 for isotropie hardening. The isotropic hardeming
cannot describe the matny behavior when it s subjected to ¢yche foading condit, o
and nonlinear kinematic hardenming would be more approprusie The tests required (o
determine the ovehic properties of the matnx have not been performed due to fach of
material. However. observauons indicate that the smual yield stress i close o the
cyche vield stress of the composite. The matriy was therefore modeled as an elasuc
perfectly -plastic matenal. In the calculations the fibers are assumed to be inear elasuc
and the matnx behuvior s modelled with a small-stramn J. perfectiy-plasuie theors
using the properties given in Table {. [tis therefore not expected thut the calcutanions
can by used to provide accurate predictions but should be suflicienty rehuble o
provide msight into the material behavior.

The calculated transverse stress strain curve (Fig. 4) for an elastic perfectiv-plastic
matnx agrees well with the experimental curve up to ¢ = 0.1%«. The calculated hmint
load 1<« much lower than the observed load because the matnx hardening has not been
tncluded. It can be noted that the increase in hmit load 1s 30°6 for the perfectiv-plastic
matnix. A substantial portion of the increase comes from the pianc strain conditton
for the matnx n the fiber direction which 15 2 '3 and the remainder represents
constraint. The calculated strain ranges agree well with the measured values (Fig 3).

The calculated response for constant stress and cychc temperature [Fig. 12¢a) and
{b)] exhibit the same features as the experiments {Fig. 3(a) and (b})] with a short
transition period for low transverse stress and a long transition penod for high
transverse stress.

In performing the elastic-plastic calculation 1t was possible to determine injtial vield
surface for the case of no residual stresses and shakedown boundary givenin Fig. 13.
These have been expressed n terms of the dimensionless loadings EAx AT ¢, and
oria,. It was found for an exponentially temperature-dependent vield stress that the
shakedown boundary is given by the result for a temperature-independent vield stress
to a good approximation by replacing the vield stress with the average vield stress for
the temperature-dependent case. The initial yield surface is dependent on the residual
stress state induced during fabrication and cannot be determined without knowing

TaBLE 1. Material constanis used in compulations
{C; = 550/10)

E 2 g,
(GPa) v (O (MPa)
Fiber 345 0.26 86x10°*

Matrix 70 0.32 24x10°* 95
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FiG. 12. Calculated strain accumulation : (a) low transverse loading. (b) hugh transverse loading.

the history of the composite. The shakedown boundary is not dependent on the
history. The ratchet rates for different loading conditions fall on the master curve
(Fig. 14) when plotted as a function of Ae; 6/0,. where A¢; is the thermal strain
increment in excess of the shakedown condition and o/6, is the current transverse
stress over the limit stress.

It was observed earlier that the failure strain was found to be strongly dependent
on the transverse stress (Fig. 8). It is known that ductility is usually strongly dependent
on the void growth factor o,/6 for a ductile fracture, where o,; is the sum of the
principal stresses and & represents the effective stress. The void growth factor in the
matrix attains its highest value close to the fiber-matrix interface (Janssox. 1990b).
The evolution of the void growth factor with the highest peak value 15 plotted in Fig.
15 as a function of accumnulated transverse strain for different loadings. For transverse
tension it increases from 3 at the initial linear elastic response to 6 at the observed
fracture strain. Pure heating causes a hydrostatic pressure in the matrix. For transverse
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loading combined with thermal cycling 6,/ decreases during the heating period after
the initial transverse loading and increases during the subsequent cooling period. The
calculations indicate that the peak value of 6,,/6 decreases initially for low values of
transverse stress (Fig. 16). However, as strain is accumulated o,,/d increases and
reaches a steady-state condition with an increase of g,,/¢ for each cycle.

The computations indicate that the peak value in a cycle of 6,./d for a given
accumulated transverse strain is strongly dependent on the magnitude of the transverse
stress (Fig. 16). A low transverse stress requires more strain than a high transverse
stress to build up the same constraint.

In Fig. 17 the equivalent plastic strain at the location with the highest value of 6,,/¢
is plotted against the accumulated transverse strain for different loadings. From Fig.
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17 it can be deduced that the equivalent strain is linearly related to the transverse
strain and is relatively independent of the transverse loading.

S. ANALYSIS OF THE EXPERIMENTAL AND COMPUTATIONAL STUDIES

The experiments and computations indicate that after a transient response the
material reaches a steady-state condition. If the operating point lies within the shake-
down condition the final behavior of the composite is elastic. When the shakedown
condition is exceeded steady-state ratcheting occurs. The experimental contours of
constant ratcheting rates are found to be parallel to the surface defining the shakedown
surface (Fig. 6). Computational studies based on the assumption that the matrix is




Transverse and thermal loading of tiber composite 607

8

Tension

(%)

a
lw
0.0 0.2 0.4 0.6 o8 1o
£ (%)
FiG. 17. Relation between effective strain at the location of the highest void growth factor and transverse
strain.

elastic-perfectly-plastic also predict shakedown behavior but the shape of the pre-
dicted shakedown surface is shghtly convex while the experimental results fall on a
straight line (Fig. 13). The computations give a close prediction of the shakedown
condition for low to intermediate transverse loading. The elastic~perfectly-plastic
matrix model underestimates the limit strength of the composite and the shakedown
region for high transverse loadings. Results for an approximate model that provides
insight to the shakedown mechanisms in the composite are also given in Fig. 13. The
model is based on constant stress fields in fiber and matrix, and is given in the
Appendix. It underestimates the stress concentration for thermal loading and the limit
load of the composite. The stress concentration for thermal loading can be determined
accurately by using the elastic solution for a concentric cylinder model.

The calculations and general results for shakedown conditions [cf. PONTER and
Cocks (1982)]. indicate that the shakedown condition should intercept the stress axis
at the limit stress. However, the experimental values intercept at a slightly lower stress
(170 MPa) compared 1o the measured limit stress of 200 MPa. This discrepancy
may be caused by the simple constitutive equations used in the calculations. The
experiments intercept the temperature axis at 130°C and the calculations predict
110°C. This is close in view of the uncertainty of CTEs of fiber and matrix and yield
stress. This indicates that the transverse strength is weakened when the composite is
subjected to cyclic Joading conditions.

It is observed experimentally that the ratchet strain rate has the form

de,

an =SB 3

where B is proportional to the distance outside the shakedown surface and f(f) is
defined in Fig. 7. The simplified analysis performed in the Appendix for the Tresca
yield condition gives similar results and predicts the same relative change in ratcheting
rate for operating points far in excess of the shakedown condition. However, the




608 S Jansson and FOOAD Lok

computer calculations predict @ more complex structure of the expression for the
ratcheting rate with the form

de, G

N "o, 1. (41
where [fi is the thermal strain in excess of the shakedown condition and 1s then
also proportional to the distance outside the shakedown surface m the temperature
direction.

1t can be deduced from Fig. 14 that /(f1) 15 4 nonhnear funcuon of §f tor operating
conditions close to the shakedown condition that 1s consistent with the experimental
observations. For operating conditions far in excess of the shakedown condition it is
linearly dependent on f and is consistent with the mode! in the Appendix for the
Mises vield condition.

The approximate model and the calculations give the same trend when the cyvehic
plastic region extends over the whole unit cell.

A lower bound on the ratchet strain per cycle has been determined by PONTER and
Coucks (1982) for Bree-like problems where the ratchet strain is uniform through the
body. The lower bound applies for loading condiuons which just exceed the shake-
down condition. The lower bound is given by

Ae,

- > 4Ae, + Ay,
AN 4A¢, + Aey {5

where the increment of elastic strain is given as

Ao,
AC, - _—E_* ) (6)

where Ao is the stress tncrement between the ¢ rent state and the shakedown con-
dition (Fig. 13) and E is the modulus in the transverse direction. The thermal strain
can be identified for the present problem as

Aey = AxAaT, N

where Ax is the difference in coefficient of thermal expansion between fiber and matnix
and AT is the temperature increment in excess of the shakedown condition. The
experiments exhibit ratcheting rates that are lower than the lower bound (5). For
operating conditions close to shakedown the cyclic plastic zones do not extend over
a large portion of the matrix and the bound is not applicable. For operating conditions
far in excess of shakedown the cyclic zone extends over a large portion of the matrix
and the bound gives a better estimate for these conditions.

The failure strain can differ by over an order of magnitude depending on the
operating condition. This behavior which is illustrated in Fig. 8 has been observed
previously by CoTtTRELL (1964). It is known for Al-Li (PiLLiNG and RIDLEY. 1986)
that ductile failure is the result of void nucleation and growth from small particles.
In the studies of HaANCock and MACKENZIE (1976) it is suggested that, when failure
is the result of void nucleation and growth, the effective strain ¢, at failure for multiaxial
state of siress has the form
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C o,
& = 165, cxp( “a ) (8

where £, 1s the uniaxial faiture strain. The fatlure strain for this matriy 10 uniaxial
tension is reported to be approximately 0.3 (Sakt1 and Tamura. 1969) and JanssoN
{1990a) has reported in tests on the composite under consideration that the strain for
in-plane shear parallel vy the fibers 15 0.2, From the computer studies it has been
determined that transverse loading alone introduces a8 multiaxial stress state for which
6,, 6 = 6.0 over a large region of the matrix at fracture. This 1s not greatly different
from the valtues present in the classical Prandt] punch problem. For a history-depen-
dent stress state the damage equation of {8) is equivalent to

g T - .
: =1, . 93
J‘.) exp (26) di = 1.65¢, (

Applying formula (9} for the failure strain and using the data in Figs 16 and 17
gives the failure strain for transverse loading:

£}, =0.9%.

which compares quite well with the observed failure strain of 0.8%% in the transverse
direction. Applying (9) for the thermomechanical loading histories gives the predicted
failure strain is shown in Fig. 8. The observed failure strain is higher than that
predicted by the model for low transverse stress. However, the model gives the right
trend but clearly requires modification.

In the model it is assumed that catastrophic failure coincides with the condition
when local failure occurs. This gives an accurate prediction when the transverse load
is close to the limit load. when a small defect is sufficient to trigger failure.

In the case of low transverse loading the loss of load carrying capacity occurs in a
small volume of matrix material and may not be sufficient to cause global fracture.
The damage has to be extended over a larger volume and the calculations give the
strain for the first matrix failure and not the strain for which the damage causes global
instability. This may explain the observed difference in failure strains for low and high
transverse loading. The analysis required to illustrate this failure mechanism would
require calculations which follow the growth of damage throughout the matrix and
it has not yet been attempted.

6. CONCLUSIONS

When the metal matrix composite was subjected to a constant transverse stress and
cyclic temperature it 1s found that after an initial transient response the material
reaches a steady-state condition.

For loading conditions which fall within a shakedown condition the increment of
strain over a cycle is zero. However, if the shakedown condition is exceeded there is
an increment of irreversible strain after each cycle of temperature. The shakedown
condition is defined by the relation




610 S Janssox and F. A, Lok

_0'7 AT _
g(07.AT)'- o +AT\ - 1 -—0.

where o, = 1.30, and AT, is defined by

£,82AT,
g, -

1.4.

Predictions of finite element computations agree reasonable well with the experimental
observations of the shakedown surface. The differences exist presumably because of
the deficiencies in the constitutive equations of the matrix which in the calculations
are assumed to be of a very simple form.

The increment of strain per cycle is also found to depend on the function which
defines the shakedown surface so that

de, s
N = exp(9.5x 10" °f)—1,
where f is defined as

B =glo;,AT).

The transverse failure strain varies substantially with operating conditions. The
failure ‘rain is 0.08% when transverse stress i1s the only loading, and it increases to
12% w hen the transverse stress is 30 MPa and the thermal loading is sufficiently high
to cause ratcheting.
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APPENDIX :
DETERMINATION OF SHAKEDOWN SURFACE AND RATCHET STRAINS

A simple calculation has been performed which provides physical insight and some himited
quantitative information.

The composite consists of an elastic—perfectly-plastic metal matrix with modulus £, and
vield stress o,. The fiber with modulus £, is assumed to remain elastic. It is also assumed that
the stresses are constant in the matrix and fiber. and that the fiber is so stiff that the longitedinal
strain is given by the thermal expansion of the fiber. This is an approximation which satisfies
equilibriura and consequently will tend to give lower bounds on stiffness. limit load and
shakedown conditions.

Since the fiber modulus £, is 5 times higher than the matrix modulus E,, the elastic matrix
response is readily calculated using the condition

— 5 VYm©
“TEE,
where g, is the stress corresponding to the transverse loading and o, is the stress in the fiber
direction acting on the matnix. Hence, for heating

+Ax AT = Q, (Al)

6; = —E AxAT, +v,0,. (A2)
Using the Tresca yield condition plastic yielding occurs when
G;—0, = —0, (A3)
if 0, < ,. Eliminating o, gives
a,(1-v,) = 0, — EAaAT,. (A4)
Plastic deformation occurs if temperature is increased by a further amount. A7,. Since Ag, = 0,
A5+ A2AT, =0 (AS)
and from the normality rule Ac§ = — Acf the plastic strain ¢ is given by
Agl = Az AT,. (A6)

Now when the temperature is decreased by an amount AT, elastic unloading takes place until
the yield condiiton ¢;—a, = g, is reached. Since ¢, = 0,

6,= —0,+0,+E, AxAT; =@, (A7)

from which the shakedown condition
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E, AxAT. <20, —0, (AR)
can be deduced. The transverse load is also restricted by the hmit foad condition
a, <aq. . (AY)
If the shukedown condition is exceeded by applying an additional temperature decrease AT,
then plasuc increments of deformation occur:
Ae = Ax AT, (A
and normality gives
At = — Aeh. (Al

In continued cvcling no incremental accumulation of strain can occur in the third direction
because the fiber is elastic. For steady-state conditions

AT. = —AT,. (A1)
Let the 1otal temperature difference be A7 for steady-state conditions. Hence.
AT = AT.+AT.. (A1}

where AT . is the value for shakedown. The expression for the ratchet strain increment in the
I-direction is then
Acs) E, g
S = TMAZ AT+ 2 22 {Ald)
e E, a, G,
This ' ‘rement can also be expressed in terms of the shakedown condition. Defimng the
function g by

E, AxA
9i(8T.0)) = =20 4 0 (A15)
gives the condition for shakedown
g:(AT.6,) < 0. (A16)

The . ..tchet increment of strain when the shakedown condition is exceeded is given by
Ae) ={.—'~gn(AT.a.)=A1T’. (A17a.b)

where AT is the temperature change in excess of the shakedown condition. The same model
for a Mises vield condition gives the shakedown boundary

g:(AT.0,) = -Ef-Aa—“-A—T— /4—3(3—')' (A18)

with the ratchet increment of strain

3
e D Ax AT {A19a.b)

N6 R O

where g, = (2,{,' 3)5,.
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ABSTRACT

The anisotropic mechanical behavior of a continuous fiber reinforced Ti alloy matrix
composite which possesses a weak fiber matrix interface is modeled numerically. Effects of
interface properties and residual stresses incurred during the fabrication are addressed in detail.
T}zé computational modeling is guided by comparison with experimental data. The study provides
an understanding which will be used to model the multiaxial behavior of weakly bonded

composites and to provide a tool for predicting the failure of composite structures.

1. INTRODUCTION

Continuous fiber reinforced metal matrix composites (MMC's) are attractive because of
excellent longitudinal properties and relatively high transverse strength and stiffness. The MMC'’s
can be utilized effectively when the loading is predominantly uniaxial with primary stresses in
the longitudinal direction and only secondary stresses in transverse directions. However, many
structural components and joints are subjected to complex multiaxial stress states. The efficient
use of composite materials.in such situations requires an understanding of the overall anisotropic
mechanical behavior of the MMC systems. MMC'’s are presently available in resgicied quandties
and shapes which limit the data that can be produced experimentally. This implies that for the
present, numerical models are useful supplements and provide estimates of mechanical responses
that cannot be determined experimentally. The models also provide insight which helps establish

the failure conditions of the composite.

Experimental and numerical procedures have been applied in a previous study (Jansson,




1991) to establish the anisoropic behavior of an FP/Ai system which features a strong interface.
The present study focuses on the anisowopic mechanical behavior of SCS6/Ti 15-3 which is a
candidate for moderately high temperature applicadon. The cor:posite features a weak interface

designed 1o maintain the fiber swrength in the fabricated composite.

Single deformation modes such as the transverse tensile behavior of the similar system
SCS6/Ti-6V-4Al has been studied by Nimmer et al (1990, 1991). Experiments (Jansson et al,
1991) established that the fiber matrix interface plays a major role on the transverse and in-plane
shear behavior of the composite. For a system featuring a perfect bond, the constraints induced
by the fibers cause the transverse strength to be higher than the mawix strength. The use of a
weak interface in the SCS6/ Ti 15-3 system results in a ransverse strength that is substantially

lower thar the matrix strength.

A detailed micro-rqcchanical model is developed that determines the influence of weak
interface, residual stresses from fabrication and the matrix plasticity. The model is verified by
comparing the computations with experimental data ootained from longitudinal tension, transverse
tension and in-plane shear tests performed on specimens ruanufactured from the composite plate.

The different failure modes are also investigated so that failure criteria can be established.

2.COMPOSITE MATERIAL

The material used in this study is SCS6/Ti 15-3 made by Textron. It consists of SiC fibers




with a carbon and a SiC coating in a umaxial lay-up. The fiber volume fracuon is 35% and the
average fiber diameter 140 mm. The marix is a B-Ti alloy, Ti-15V-3Cr-3Al- 3Sn. The composite
1s fabricated by vacuum not pressing a fiber-matrix foil lay-up. Detailed informadon of the
processing is not available, but the composite is consolidated at approximately 900 C. In the
subsequent cool down, the mismatch in coefficients of thermal expansion of fibers and the matrix

causes residual stresses.

Tensile properties of the :natrix were obtained from tests on matrix foil extracted from
the composite. The fiber modulus was determined from the average of SO bend tests (Jansson et
al, 1991). The remaining properties have been exwmacted from the literature and the elastic
properties are summarized in Table 1. The matrix and fiber stress-strain curves are shown .n

Fig. 1.

The longitudinal and transverse behavior (Jansson et al, 1991) were determined using dog-
bone specimens for longitudinal and transverse tension. Specimens of the Iosipescu type were

used to determine the in-plane shear response.

3. MICRO MECHANICAL STUDY

Numerical simulations were performed using homogen’ ;ation techniques in conjunction
with the general purpose finite element package ABAQUS (1988). In the computations the fibers

are assumed to be long parallel cylinders arranged in a hexagonal amay (Fig. 3). This is the




simplest peniodic array for which the linear elastc propernes are wansverselv i1sowopic. The
nonlinear response of the array has a slight devianon from wansverse isomopy. It was
demonstated by Jansson (1991) that the array can be used to predict the properues of a
ansversely isotropic systermn with randomly distribute fibers, if care is exercised when selecnng
the loading directions. For a system with randomly distributed fibers the matrix area fracuon on
any plane cut through the composite is equal to the mamrix volume fraconon, ¢f Urderwood
(1970). However the marrix arca fraction is soongly dependent on the ornientanon and locanon
for a periodic array. The present system has some form of arrangement resulting from the fiber-
foil consolidation process, but is difficult to identdfy any definite simple array rype, since the
distribution pattern differs from point to point. However it was found that an impontant feature
of the weakly bonded systems for transverse tension is the mawix area fraction on the weakest
planes. It was determined to be 40 %, which is substandally lower than the value of 65 % for
randomly distributed fibers. The corresponding value for the hexagonal array is 38 % when
loaded in the 1-direction, Fig. 2. The hexagonal array was selected in this case because it models
the correct volume fraction and matrix area fraction on the weak planes that dictates the

transverse strength.

In the homogenization technique, c¢f (Jansson, 1992), the displacement field is assumed

to have the form o
U=u; +<€ >x+u (D

where u is an arbitrary constant displacement, <&ij> is the average strain in the composite and

uf is an unknown displacement field which is periodic on the unit cell. The average swress <o,>




can be determined from the tracton T, on surface S on the unit cell by use of the mean stress

theorem as

<o U>-J'T‘»x}ds (2)

All the loading cases considered are symmerric with respect to the x, and x, axes in Fig.
2 and the displacement field has an inversion symmetry about the point (x,=aV3/2, x,=a/2). This
implies that only the unit cell A-B-C-D in Fig. 2 need be analyzed. Ten node quadratc
generalized plane strain elements with reduced integraton were used to model the longirudinal
and transverse behavior. The boundary conditions at the interface were selected to satisfy the
interface bond characteristics. A fully bonded interface was modeled by enforcement of
displacement continuity across the interface. The weak interface was modeled by a 3-node sliding
interface element available in ABAQUS. The interface is assumed to debond when the normal
stresses become tensile and the interface is thereafter traction free. Normal compressive stresses
can be accompanied by shear stresses given by Coulomb’s law of friction. Restrictions of the
code meant that the modeling of the in-plane shear response required a 3-dimensional analysis
using a 20 node brick element. Boundary conditions which ensured generalized plane strain
behavior and the symmetries on the unit cell were imposed. These conditions reduce the degrees
of freedom in the model substantially and results in reasonable solution times. Numerical
difficulues were encountered when calculating residual stresses using available 3-dimensional
interface elements. This difficulty was overcome by modeling the interface as a thin

elastic-perfectly plastic solid layer whose yield strength was selected to be equal to the sliding




resistance of the interface.

The fibers were assumed to be isowopic and linear elastic and the mawrix is assumed to
be elastic-plastic with isotropic hardening. The influence of different temperature dependence of
moduli and matrix yield strength were studied. It was found that the simplified temperature
dependence of the yield stress given in Fig. 3 together with temperature independent moduli gave
the same residual stress distribution as more refined models. The elastic propertes of fiber and
matrix given in Table 1 and the temperature dependence of the matrix yield strength given in Fig.

3 were used in the computatons.

3.1 Residual Stresses After Fabrication

The residual stresses following fabrication are likely to influence the mechanical behavior
of weakly bonded composites. When calculating the residual stress fields the composite is
assumed to be stress free at the consolidation temperature before it is subsequently cooled down
to room temperature. The exact details of the processing are unknown and consequently no time-
dependent viscous behavior was included in the analysis. The residual stress distribution in the
matrix is shown in Fig. 4 for the consolidation temperature 900 C. The residual stress in the fiber
consists of a compressive axial stress of 720 MPa and almost uniform compressive radial and
hoop stresses of 220 MPa. The residual hoop and radial stresses in the matrix vary substantally.
The highest magnitudes are found near the interface with a compressive radial stress of 200 MPa
and a tensile hoop stress of 500 MPa. The axial stress is tensile and is almost constant, varying

between 390 and 420 MPa. No matrix cracking was observed in the as received composite




(Jansson et al, 1990) which suggests that the matrix toughness and duculity are sufficienty high

to sustain the tensile stresses induced during processing.

3.2 Longitudinal Tension

The computed stress-strain curves following the different assumed consolidation
temperatures of 0, 600 and 900 C are shown in Fig. 5. The difference in response for different
consolidation temperatures is modest which indicates that the magnirude of residual stress has
only a weak effect on the longitudinal behavior. The calculated longitudinal modulus E,, and
Poisson’s ratio v,, are close to the experimental values given in Table 2. A slight sample to
sample variaton in the longitudinal tensile response was obse:ved in experiments, as shown in
Fig. 5. The variation is equivalent to a variatien ii: the consolidation temperatures of 600 C. This
is unlikely and the observed variation is most likely caused by handling of the panels after

fabrication.

Since the longitudinal response is only weakly affected by the constraint in the wransverse
direction the longitudinal stress strain relationship can be estimated closely using the simple

parallel bar model to give

c
Oas~Efss+(1-)| 0 nlEsg+27)-0 (3)

m

where, f is the volume fraction, E; is the fiber modulus, E,, is the matrix modulus, G, is the

longitudinal residual stress in the matrix after consolidation and o, is the longitudinal stress in

7




the marrix. This relaton agrees well with the corresponding numerical calculanons when the

longitudinal residual stress used is that determined by computaton.

The calculated transverse contractions following consolidation temperatures of 0 and 900
C are compared with the experimental data in Fig. 6. The experimental and calculated curves
exhibit the same behavior with an inidal linear response followed by increased contraction after
matrix yielding. The difference in the calculated responses for the two consolidation termperatures

is modest and is of the same order as the sample to sample variation.

3.3 Transverse Tension

The effect of interface bond conditions on the transverse tensile behavior was first
investigated by computing responses for an initially stress free state. Calculations were performed
for a fullv bonded and for a weak frictionless interface. As illustrated in Fig. 7a, the stress strain
curve for the fully bonded interface has an initial transverse elastic modulus of 167 GPa and a
limit swength of 1195 MPa. These values are higher than the experimentally observed values of
129 GPa and 420 MPa respectively. For a weak frictonless interface the calculated elastic
modulus is 48 GPa and the limit strength 380 MPa. For this case the predicted elastic modulus
is much lower than the experimental value, while the limit strength is in close agreement with

experiment.

When a residual stress state corresponding to the consolidation temperature of 900 C is

included in the analysis for the weakly bonded interface, it was found that the elastic properties,




Table 2. and the strength agree very well with experiment. The influence of the coefficient of
friction at the interface on the stress-strain relationship is negligible as is shown in Fig. 7b for
the values of | = 0 and 0.8 . The calculations predict that debond ininates when ¢,,=140 MPa
at the pole of the fiber and the angle of debond increases rapidly with applied stress undl it
subtends an angle of 90°. Matrix yielding was predicted to occur in a small confined region on
first loading but the effect of plasticity on the ransverse stress-strain behavior is not noticeable
enti! after debond. This illustrated in Fig. 7b where the stress strain curve for a linear clastc
matrix shows the same response up to debond and the non-linearity caused by plasticity is only

evident after the initiation of debond.

The presence of the weak interface reduces the transverse strength of the composite to
approximately 40% of the matrix strength. A limit load calculation, based on a constant tensile

stess in the ligament, gives the limit strength (Jansson et al, 1991) as

cn-_z_.A

V3

G um (4)

m

where A, is the matrix area fraction and G, is the mawmix swength. The 1imit load calculated

using eqn. (4) is 420 MPa which agrees well with experimental and computational values.

The measured contraction in the unloaded transverse direction for transverse loading is
shown in Fig. 8. The inidal linear response is closely given by a linear elastic calculation based

on a value of = 0.8 at the interface and a residual stress state sufficiently high to maintain




continuity at the interface. Following the inidal linear response, when debond occurs there is
substantal strain increment in the loaded direcdon. The total strain just after debond is closely
given by a calculaton for a fully ¢+»onded interface with a linear elastic mammx. For higher stress
the contraction increases as the region of plastic deformation increases in the mawix. The slope
then follows the calculation for a fully plastic mamix and a debonded interface. The full
simulation following consolidation temperature of 900 C has all the features of the observed

deformation but slightly overestimates the contraction.

The longitudinal contraction resulting from the transverse loading is shown in Fig. 9. The
inigal linear response and the limit behavior are closely modelled using a consolidation
temperature of 900 C and a sliding interface. While a coefficient of fricion u= 0.8 fits the

experiments most closely the sliding resistance has modest influence on the response

3.4 In Plane Shear

Experimental results are available for the lIosipescu specimen for two fiber orientations
(Jansson et al, 1991). In one set of experiments the fibers are orientated in the direction of the
notches, Fig. 10a, and is referred to as longitudinal loading. The other case when the fibers are
orientated perpendicular to the notches, Fig. 10b is referred to as transverse loading. It was
observed experimentally that the initial elastic moduli are close for the two orientadons but the
limit strength for transverse loading at 400 MPa was approximately 40% higher than the value
of 280 MPa observed for longitudinal loading. In longitudinal loading the fibers are orientated

such that the global stress field is constant over a long segment of the matrix orientated in the
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fibers direction. This condition permits highly concentrated bands of shear to develop in the
matrix along the fibers at the weakest plane. In the case of transverse loading only a shorm
segment of the matrix along the fiber directions is subjected to the higher stress in the gauge
section. This effect suppresses the development of bands of concentrated shear since the stresses
decrease with increasing distance from the gauge section. Consequently the limit strength is
higher for transverse loading compared to longitudinal loading. No such dependence on fiber
orientation was observed (Jansson, 1991) for a system that has a strong interface and a smaller

fiber diameter.

The computed and experimental shear stress-strain curves for longitudinal loading are
shown in Figs. 10a. The computations for a fully bonded interface predict an inidal elastic
response which agrees with experiment, but the final limit strength is substantally higher than
the experimental value. A calculation based on an interface yield strength of 185 MPa exhibits
an initial non-linear response that agrees with experiment but the predicted limit strength is
higher than the experimental value. The correct limit strength is given by a computation for
which the interface yield strength is 115 MPa. Hence, it might be inferred that the interface is
initially in full contact. Sliding first develops when the shear stress at the interface is 185 MPa

and the sliding stress is subsequently reduced during the slip to a saturation value of 115 MPa.

The initial lincar elastic response for transverse loading, Fig. 10b, is identical to the
response for longitudinal loading. This suggests that the calculations based on the assumption that

the local displacement field consists of linear and periodic components, eqn. (1), also predict the
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correct linear elastic response for wansverse loading. However the limit swength is higher for
ransverse loading, Fig. 10b, than the longitudinal loading, Fig. 10a. This implies that the
calculatons based on egn. (1) underestimate the limit stength for transverse loading. As
mentioned earlier, the plastic deformaton in the matrix is very constrained for this loading and
the assumption of a displacement field with linear and periodic, eqn. 1, components fails to pick

up this feature.

To simulate this constraint the deformation field in the elastic fiber was still assumed to
have linear and periodical components. However the deformation field in the matrix was assumed

to have only linear components, to be given by,

us"ug*<713>x1 (5)

This formulation suppresses the development of regions with high concentrations of shear.
The calculated responses assuming the same interface characteristics as those assumed for
longitudinal loading are shown in Fig. 10b. It can observed that use of the same interfacial shear
strength as that for longitudinal loading predicts the correct limit behavior for transverse loading.
The initial shear modulus before debond and limit strengths for caiculations based on an interface

shear stress of 115 MPa are listed in Table 2 for the two loading cases.

A simple estimate of the limit strength for longitudinal loading is given by considering
a deformation that is given by a slip in the matrix on the surface x, = 0 and at the fiber matrix

interfaces. This gives
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i 1
T~1,-=(1-Ap)+—01.As (6)
2 V3

where 1, is the limiting strength of 1, 17,' is the shear stength of the interface, o, is the limit
stress of the matrix under uniaxial tension and Ag is the matrix area fracton of the weakest
plane. For the system under consideraton A,, =0.4 and use of eqn. (6) with the experimental
limit strength 7, =300 MPa gives an interface shear strength 1,' =95 MPa, which is close to the

computed value of 115 MPa.

The limit swength for the transverse loading can be estimated by assuming that the
deformation in the matrix is linear and as given by eqn. (§). This deformation causes a plastic

deformation throughout the matrix with slip at the interface. A work balance gives

1L-Lo,‘,,,(1 —f)+i1;f &h)
fg T

where f is the fiber volume fraction. This expression is a modified version of the upper bound
given by Majumdar and Mclaughlin (1973) for a strong interface. Using the experimental strength
7, = 400 MPa in this relation gives an interfacial shear strength of 1, = 100 MPa, which is

consistent with the value of 115 MPa determined from the computations.
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3.5 Transverse Shear

While no experimental results are available for this form of loading, the calculations were
performed to provide a more complete understanding of the anisoropic behavior of the matenal.
Shear loading 1 in the transverse plane is represented by the principal stress state shown in Fig.
11. Two loading conditions have been investigated: one loading defined by 6, = -0, = T and
the other by - ©,, = G,, = t, where T > 0 . Computed shear stress strain curves for a fully
bonded and a frictionless interface following a consolidation temperature of 900 C are shown in
the Figs. 11a and 11b. For the fully bonded interface the two loading cases, ¢,, > 0 and ©,, >
0 exhibit very similar behavior with a limit strength of 600 MPa. However in the case of a weak
interface, the strength for o, > 0 is 310 MPa while the strength for 6, > 0 is 270 MPa. This
difference indicates that a system with a debonded interface does not exhibit the transverse
isotropy commonly assumed for fiber reinforced composites. It was observed in the calculations
that the debond always initated close the point of the interface whose normal coincides with the

direction global maximum principal stress.

Pure transverse shear loading results in global strains that have both shear and normal
components. For a fully bonded interface the normal strain component exists only when one of
the constituents has a non-linear response. However for this case, as shown in Fig. 1llc, the
normal component is very small compared to the shear strain. For a weak interface the normal
strain is small before debond and grows to 30 % of the shear strain after debond, Fig. 11c. For

a initially stress free state the debond occurs earlier and the normal strain component is greater.
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4. FAILURE MECHANISMS

The computational procedures described previously provide the local swress and strain
dismributions in the composite which can be used to determine local failure conditions of the
constituents. Macroscopic failure condition for the composite can then be predicted for different

loadings.

4.1 Longitudinal Tension

The fracture in the longitudinal tension is dominated by fiber failure. The observed failure
strain of the composite is of the same magnitude as the fiber failure strain & . The stress at

failure can be written as

c UTS-fCF+(1 "Dcym(Ef‘l’ c;m ) (8)

m

where G, is yield stress of the matrix at fiber failure and o is the stress in the fibers at failure.

For the present residual stress state 0,, = 900 MPa at failure.

The exact nature of the fiber failure is still an open question. Failure occurs when a defect
of critical size has formed in the composite. One extreme estimate of the strength is to assume
that fracture occurring in two adjacent fibers within a stress transfer length causes a critical

defect. The average stress in the fibers when this occurs is give by
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or [rdzlcf (m+1)(k-1) [?l? (9)
F1+1/m){166vd, k™'-1 |

where v is the loaded volume, & the stress concentrauon in a fiber next to a broken fiber, d 1s
the fiber diamcter , §, is the stress transfer length and [ i, the gamma fur.ction. This is the model
by Zweben and Rosen (1970) modified to account for a linearly varying fiber swess within the.
wansfer length of the fiber. Based on data for the SCS6 fiber given by Bair et al (1983) it was
deduced that the average fiber smength is o = 4.3 GPa for a gauge length /, = 6.25 mm and the
Weibull modulus is m = 6.5. For the present specimen the loaded volume v = 125 mm’ and the
transfer length is estimated to be §, = 1,/0gd/4, where the sliding resistance of the interface 1,

= 115 MPa. An upper bound on k for fibers arranged in an hexagonal array is k =1.17. Use of

these values in eqn. (9) gives a failure strength 6ys = 1890 MPa.

The other extreme is to assume that fiber fractures do not introduce local suess
concentrations in adjacent fibers and that global load sharing occurs. The fiber contribution at
the load maximum for the global load sharing model has been estimated in an approximaie way

by Curtin (1989) and Neumeister (1991) as

— 1
OF- OF m+1|— 4 lo't,r(l +1/m) mel (10)
M1 +1/m) m+2‘_m+2 d Gop

This model predicts a strength O, = 2080 MPa. Both models predict the strength within

10% and are in good agreement with the experimentai result. Tests of specimens of different

16




volumes and with stress gradients are required to reveal the exact narure of the failure process

and to discriminate between the models.

4.2 Transverse Tension and Shear

The observed failure strain in transverse tension is 1.2% which is approximately 40% of
the uniaxial matrix failure strain (Fig. 1). The computations for ansverse tension and shear
indicate that the suff fibers cause multiaxial stress fields to develop in the matrix. When a ductile
material is subjected to swess states with a high hydrostatc tension component the failure
ductility is reduced. Hancock and Mackenzie (1976) suggested that failure is the result of void
nucleation and growth. They estimated that the effective plastic strain at failure, g, for
muldaxial stress states is related to the uniaxial failure strain by

£5-1.65¢ exp| - = —* 65))
2 o

where & is the plastic component of the uniaxial failure strain of the mamix, o, is the
hydrostatic stress and o° is the von Mises equivalent stress. From the uniaxial stress-strain curve
for the Ti alloy in Fig. 1. it can be deduced that ¢, = 3%. This value fof the matrix foil is
substantially lower than what is normally observed for p-Ti alloys. The low matrix ductility
implies that large strain effects can be neglected in the analysis. For a time dependent stresss state,
the void growth rate has to be integrated over the history and the used portion of the matrix

ductility is given oy
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fe"pi """g = dg (12)
D=2 L<0
1.65¢,

where the vanable D is used as a damage variable with D=0 for a virgin matenal and D=1 when
the material has lost its load carrying capacity and €° = € . The evolution of the damage D has
been calculated by integrating eqn. (12) numencally using the stresses and strain increments from

the computations.

The distribution of the damage parameter D in mansverse tension is shown in Fig. 12 for
a global strain of 1%, which is close to the observed failure strain of 1.2%. The computations
indicate that most of the load carrying capacity is lost. A region of high damage is localized in
the matrix ligament between the fibers and stimulates fracture on a plane approximately at 45°
to the loading direction. Microscopic observations (Jansson et al, 1991) showed the failure

surface consists of plastically deformed matrix ligaments and debonded matrix fiber interfaces.

The damage distrib'ution for transverse shear with T > 0 is shown in Fig. 13 for a global
shear strain of 1.6% . The trend is similar to transverse tension with a region of high damage in
the matrix ligament between the fibers, orientated in the direction of the global tensile principal
direction. The damage starts to exceed unity in some regions of the matrix when the global stress
is 272 MPa, which is 13% lower than the predicted limit strength of 310 MPa. This suggests that
the available matrix ductility may be exceeded in portions of the matrix before the limit condition

is reached.
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4.3 In-Plane Shear

The only non-vanishing stress components in-plane shear, except for the residual thermal
stresses, are the shear swesses 1,; and 1,,. This implies that this type of loading does not cause
high hydrostauc stresses to build up in the matrix. The effect of the initial residual stress 1s small

and the failure criterion described previously then simpilifies to

-1 €e° (13)
1.65 €,

The computed damage distribution for longitudinal loading corresponding to the observed
failure strain y,,= 3% is shown in Fig. 14. The damage exceeds unity across the whole matrix
ligament between the fibers indicating that the model predicts a failure strain slightly lower than

the expenimental value.

5. CONCLUSIONS

The longitudinal and transverse tensile properties can be predicted by a computational
model which makes use of fiber and matrix properties, fiber distribution and an interface which
debonds when the interface is subjected to normal tension. In addition to predicting the elastic
properties and limit strength the calculations also predict the failure smains. The residual swesses
following the fabrication strongly affect the mechanical behavior. The compressive ncrmal

residual stress at the interface dictates that the initial elastic properties are consistent with normal
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contnuity at the interface. In transverse tension the applied stress can overcome the residual
stress and interface debonding occurs which gives arise to a loss of suffness. The presence of the
debond also decreases greatly the transverse limit strength, with the composite srength being

dictated by a mawix perforated by un-reinforced holes.

The in-plane shear properies cannot be predicted by a frictioniess interface. It is necessary
to assume an initial sliding swess of 185 MPa that subsequently reduces to 115 MPa when the
sliding is fully developed. However the interface characteristics determined from the shear test
with longitudinal loading predict the substantially different strength for the shear test with
transverse loading. The different limit behavior for transverse and longitudinal shear loading
indicates that the in-plane shear response is strongly dependent on the extent of the plastic zone

along the fiber direction. This feature has to be addressed in the formulation of macroscopic

constitutive equations.

The analysis of the transverse tension test indicates that the sliding resistance at the
interface can be modeled by Columb friction with a coefficient of fricdon p = 0.8. Use of this
value and the residual swess state following a consolidation temperawre of 900 C predicts an
initial sliding resistance of 160 MPa for in-plane shear. This is close to the value determined
from the inplane shear test of 185 MPa. However, during the in-plane shear loading after matrix
yielding the normal prcs§urc at the interface relaxes and the steady state sliding resistance
vanishes for a Columbs friction model. Microscopic observations of the fibers showed that the

fibers have a surface texture with ridges oriented in the hoop direction. For in-plane shear loading
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the sliding direction ts normal to the ridges while it is parallel to the ndges for ransverse tension

and this could cause the observed steady state sliding resistance for in-piane shear.

Using the mechanisms of interface debonding and a void growth model for mamx failure
it was possible to predict with accuracy the macroscopic failure strains for matrix dominated
failure modes. The exact nature of the longitudinal failure is still an open question. However,
models of two extreme failure conditions give approximately the same predictions of the failure

stress.

It has been demonstrated that the composite properties can be predicted from the matrix,
fiber and interface properties by using established computational procedures. In this case the
interfacial properties have not been measured but have been inferred form the longitudinal shear
test of the composite. Independent push-through tests (Warren et al, 1992) show sliding
resistances that are close to the saturation value used here. The push-through test may therefore

be used as a means of providing some information on the sliding characteristics for the analysis.
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Table 1. Matrix and fiber propertes at ambient temperature
Matrix Fiber
Young's Modulus (GPa) 115 360
Poisson’s Ratio 0.33 0.17
Tensile Strength (MPa) 950 4300
Strain to failure in tension (%) 3 1.2
Coeff. of thermal expansion (1/C) 9.7 10°® 4.5 10°
Table 2 Comparison of computed and experimental elastic properties
E, Vi E, Via Vi O Gy Tul.‘ Gy | T
GPa GPa MPa | GPa | MPa | GPa | MPa
Experimental 196 1025|129 (034|102 {420 62 300 62 400
Computed 202 | 0.27 | 133 | 048 | 0.17 | 420 64 300 73 400
" Longitudinal loading
** Transverse loading
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Fig. 8

FIGURE CAPTIONS

Uniaxial Stress-Strain behaviors of Ti 15-3 matrix and SCS6 fibers.

Hexagonal array with unit cell indicated.

Temperature dependence of matrix the yield strength and highest calculate equivalent

matrix stress for a consolidation temperature of 900 C.

Calculated residual stress distribution after consolidaton at 900 C.

Longitudinal stress-strain behavior for different consolidation temperatures.

Transverse contraction for longitudinal loading.

Transverse tensile stress-strain behavior for different interface characteristics.

(a) Effect of interface bond condition.

(b) Effect of friction at the interface.

Contraction in unloaded transverse direction for transverse loading. AT= 0 indicates an

initially open interface and AT= indicates an interface that rerrains closed.
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Fig. 9 Contracton in longitudinal direction for transverse loading.

Fig. 10 In-plane shear stress-strain curves for different sliding conditions at the interface.
(a) Longitudinal loading

(b) Transverse loading

Fig. 11 Calculated transverse shear stess-strain curves for different consolidation
temperatures and interface bound condidons
(a) Stress-Strain curve for 6,;=-0n=1
(b) Stress-Strain curve for G,,=-G,=T

(c) Normal strain components for the two loadings.

Fig. 12 Distribution of damage parameter D for transverse tension, at &,,=1%.
Fig. 13 Distribution of damage parameter D for transverse shear at y=1.6 %.
Fig. 14 Distribution of damage parameter D for in-plane shear, at v,,=3%
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TRANSVERSE DUCTILITY OF METAL MATRIX COMPOSITES
S. R Gunawardena. S. Jansson and F. A. Leckie
Deparment of Mechanical and Environmenta! Engineenng
University of California
Santa Barbara, CA 93106
ABSTRACT fiber strength and in this cucumstance the mansverse swength

The role of the fiber matrix interface bond on the
ransverse ductility of continuous fiber reinforced composites
has been investigated. Two specific systems have beer
considered: an Aluminum alloy matrix reinforced by
Alumina fibers, characterized by a strong interface and 2
Titanium alloy reinforced by coated Silicon Carbide fibers,
characterized by a weak interface. A micro-mechanical study
indicates that the bond condition has a significant effect on the
state of stress in the marrix which in tumn dictares the available
matrix ductility. The micro-mechanical predictions are in good

agreement with the experimental results for the two systems.

1. INTRODUCTION

Mewal matrix composites reinforced with continsous fibers
have aturactive sarength and stiffness properties. They have
the advantage of providing superior gansverse properties
compared to polymeric matrix composites. Transverse
properties are strongly dependent on the fiber mamix interface
and systems with strong interface are expected to have a
higher transverse suength and stiffness than the martrix.

Some systems have a weak interface in order 1o maintain the

and modulus of the composite are lower than those of the
marmrix. The interface strength also affects the ductlity of the

COmposites.

To clarify the effect of the bond condition on the
transverse ductility. two different continuous {iber reinforced
composite systems are investigated in this study. One
composite consists of an Aluminum alloy reinforced w:th
Alumina(Al2013) fibers. An impontant charactensuc of this
material is the combination of a strong bond at the fiber-matrix
interface and a matrix with a large ductility of 30%. The other
composite consists of a Titanium alloy reinforced with coated
Silicon Carbide(SiC) fibers. This system features a weak bond
between the fiber and matrix and a matnix ductility of 3% A
micro-mechanical study has been performed to understand the
mechanics that governs the behavior of these composites, The
computed results are compared with the expenimentally
determined mechanical behavior in sections 2 and 3. A mamix
failure criterion based on void nucleation and growth is
suggested in Chapter 4 and verified with the aid of the
computations and experiments. As a result of this study it 1s
possible 1o predict the transverse ductility of the composite in

terms of the matrix ductility and the interface bond strength.




200 £

10

(.1 ! B
L b ,
= [
S [

. o0

- ! Composite i Transverse Tension)
@)

Experiment
swees Computed

U- i A i i
G4 0.6 un
fy (%)

Fig. 1 Seress-stramn curves for FPUAl ang Al allo maTiv

«Expenimental and computed)

2. EXPERIMENTAL PROGRAM

The composite with strong interface bond is DuPont’s
FP/Al reinforced with continuous a-alumina fibers in a
unidirectional lay-up [Champion et al, 1978}). The fiber
volume fraction was determined to be 55%. The fibers have a
diameter of approximately 20 um, a modulus of 345 to 380
GPa, z tensile strength of 1.9 to 2.1 GPa for 6.4 mm gauge
length, and a fracture strain of 0.3-0.4%. The matrix material
is a 2 wt% Li-Al binary alloy and its tensile propertes are
shown in Fig. 1. The composite is fabricated by vacuum-
infilration of the molten marrix and was available in the form
of a plate of 150 x 150 x 12.5 mm thick.

The composite with the weak interface bond consists of a
Titanium alloy (Ti-15V-3C5-3Su-3Al) matrix reinforced by
contunuous SiC fibers (SCS6). The mechanical properties are
reported in [Jansson et al, 19912). The fiber volume fraction
was detcrmined to be 35%. The fiber diameter 1s 150 fim and
the elasuc modulus is 360 GPa. The matrix properues,
determined from a delaminated marrix foil, are given in Fig.
2. The composite is made by hot-pressing alloy foils between
the fiber tapes. The composite was available in plates of 150 x
150 x 2 mm thick.
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Transverse stress-stram curves for the FP/AL composite
are shown in Fig. 1. from which a devianon from lineanty s
observed to occur at 75 MPa. The ultimate swength 1s 200
MPa and the strain to fracture is 0.8%. The ultimate suength
1s about 50% higher than the uldmate matrix swength while the
failure srain of 0.8% is only 3% of the 30% failure strain of

the matrix [Sakui and Tamura, 1969].

The fracwure is observed to be localized to one narrow
band oriented approximately 459 10 the loading direcnon. The
fracture surface is confined to the mawix and no bare fibers
were visible on the fracture surface. The matrix fracture is

ductile with the appearance of voidage.

The transverse stress strain curve for the SCS6/Ti
composite is shown 1n Fig. 2. A slight deviation from the
mital elastic response occurs at a stress of 150 MPa (as
illustrated in Fig.4) and the ulumate stength is 420 MPa,
which 15 less than 50% of the matrix strength of 950 MPa,
The composite failure strain 15 1.2% compared to the observed

matrix failure strain of 3%.

The macroscopic fracture surface 1s perpendicular to the
tensile direction. The failure surface is irregular with

debonding that is a combinanon of debond at the fiber mamx




\nterface and fracture in the carbon layer of the fiber. The
matnx higaments between the fibers extubit a ducule fracuure

{Jansson et al .1991a}.

p—— 23—

Fig. 3 Hexagonal array with unyi cell indicared.

3. MICRO-MECHANICAL STUDIES

By using the theory of homogenization in conjunction
with finite element procedures, the mechanics that governs the
behavior of the composite in terms of the properties of the
fiber and the matrix have been studied.

The composites both consist of long fibers in a
unidirectiional layup. The fibers in the FP/Al composite are
randomly distributed in the ransverse plane while the fibers in
the SCS6/Ti 15-3 composite are more arranged. In the model
1o be analyzed the fibers are assumed to be long parallel
cylinders arranged in a hexagonal array, Fig, 3. This is the
periodical array which has the mechanical properties with the
closest symmetries to a composite with randomnly distributed
fibers. Both systems are transversely isomopic when the
constituents are linear elastic but the hexagonal array has a
weak deviation from transverse isotropy when the matrix
exhibits a nonlinear stress strain relation {Jansson, 1990}

The deviation is most pronounced for a perfectly-plastic

mamx. The mansverse loading have been simulated by iouding
the array in the -duecnon. This loading does nad govate viip
on planes that are unconstrained hy the fiders ang cives
reasonable resuits It also gives the correc: fimut soess 1or the
SCS6/T: composite because the magix ares rasuon on the
fracture surface and the weakes! cross-section of the array ire

-

close. A loading in the J.direction zives 2 bowe il sOess

The governing boundary value problem for the effecuve

properties of the unit cell 1s two dimensional and has been

solved with the Fintte Element method by using ABAQUS
finite element program [1988]. A 10 node biguadratc
quadrilate generalized plane suain element with reduced
integration was used to avoid locking. The considered loading
of the unit cell. Fig. 3. is svmmetnc with respect to vy and y2
axis. This implies that only an eighth of the indicated unit cell
in Fig. 3 needs to be analvzed. The boundary condrtions for
different loadings are given in the reference{Jansson, 1990].
In the calculanons, the fibers are assumed 10 be hinear elasuc
and the matrix behavior is modelled by a small sorain J7 plasnc
theory. The interface of the FP/Al is sufficiently strong to
assume displacement continuity across the interface, whereas
the interface of SCS6/Ti marrix is weak and interface
displacement continuity can not be assumed. The interface
was modelled by assuming that it is frictionless and can just

transfer normal compressive ractions.

The elastic properties of the FP fiber and aluminum matnix
are readily available from the literature. However. the flow
properties of the Al-L1 mamx alloy are strongly dependent on
histories of heat treatment and cold-working [Stark et al.
1981, and Sakui and Tamura, 1969]. Denils of the
processing of the composite and of any post heat treatments
are not available and the flow propenies of the Al mamx could
not be determuned from the hierature. Those were determuned
by fiting the calculated response to the inplane shear swress-
strain curve{fansson and Leckie. 1991b]. The marrnix
properties obtained could be used to predict accurate stress-

strain relationships for the other loading states.  The matnx
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properties of the SCS6/Ti composite were determined by

performing tests on a foil exwracted from the composite.

The residual smesses induced during processing strongly
affect the swess strain characteristcs of the SCS6/Ti composite
and have to be included in the analysis. The stress field has a
compressive component across the fiber matrix interface
which inhibits the onset of debond when the composite is
subjected to transverse tensile loading. The residual stresses
induced during the fabrication was modelled by letting the
composite be stress free at the consolidation temperature. The
residual saresses build up during subsequent cooldown and are
dominated by the thermal mismatch and the temperature
dependent yield stress. Although the consolidation was done
at approximately 900°C the strength of the Ti alloy is
considerably smaller at temperatures higher than 600°C and
the major portion of the residual stress is built up below
600°C. For the purpose of computation, it was found to be
sufficient to use the temrerature dependence of the matrix as
shown in Fig. 5 and the properties of the SCS6 fiber and Ti

matrix are given earlier.

The calculated ansverse stress strain relationship , using
the interface conditions and the residual stress state given
above , is shown in Fig. 4. The calculations predict that
debonding occurs when the stress is about 160 MPa. The
maximum attainable ransverse stress is about 410 MPa and

this is 43% of the matrix strength. This reduction is a
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consequence of deponding that reduces the effective load
carrving arca of the composite. The swess strain predicuons
using the fiber and matrix propenties described above agree
well with the experimental observations which gives
confidence in the use of the calculation results for the

interpretadon of micro-mechanical phenomena.

4. FAILURE DUCTILITY

Micrographic observations {Janssor et al. 1991a,
Jansson and Leckie, 1991b] suggests that failure is due to
ductile fracture accompanied by void growth in both the
aluminum and titanium matrices. It is known for Al-Li [Pilling
and Ridley. 1986] that the ductile failure is the result of void

nucleation and growth from small particles.

The computations show that the suff fibers cause
consmrained multiaxial stress fields to build up in the mamx. In
the studies of Hancock and Mackenzie [1976] it ts suggested
that when the failure is the result of void nucleanon and
growth the effective plastic strain at failure for mulnavial

stress states has the form

[¢]

>
Ea

] (a

where €, is the plastic component of uniaxial failure strain of

& = l.65£ocxp[~
L

to | —
al

the mamx, Gy is the sum of the pnncipal sresses and § 1




the effective stress. The result is based on the void growth
mechanism suggested by Rice and Tracey {1969]. The plastic
component of uniaxial failure strain for Al-L1 was reported to
be approximately 0.3 {Saku and Tamura, 1969) and that for

afoil of Ti alloy was found from Fig.2 10 be 0.02 .

For a2 uime dependent stress state the void growth rate has
10 be integrated over the history and the failure strain s then

given by the conditon

zexp(%%) dg

1.65¢,

where D=1 at €= g;. The variable D here will be used as
a damage vanable since it is equal to zero for a virgin material

and approaches unity when the material has lost its load

carrying capacity.

The spatial stress and strain distributions in the mamix for
the FP/Al system are shown in Figures 6a-c for a global
transverse strain of 1% . The plastic zones are fully developed
at this strain. High hydrostatic swesses, Fig. 6a, develop near
the fiber matrix interface ar approximately 30° to the direction
of tensile sn'css(y1 direction in Fig.3). A relatively high
hydrostatic stress is also present between the fibers, away
from the interface and closc to the axis of stress. The
distribution of the effective stress, Fig. 6b, is more uniform
and has a high value at the location of the high hydrostatic
stress component. The effective plastic strain, Fig. 6c, attains
its highest value at the interface approximately 50° o the ¥y
axis. It is relatively low at the location of the highest

hydrostatic stress.

The stress and strain distributions for SCS6/Ti system are
shown in Figs. 7a-c for a global strain of 1% . In contrast to
the FP/Al system the highest hydrostatic stress here is in the
matrix ligament between the fibers at 90° to the ¥p axis.

During the loading, the interface debonds and opens up at the

3: Hydrostatic stess oy, «MPas

<) Effectve plastc soraun ?'i’irl
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¥y axis and the higaments between the fibers carry the foad
The fibers remain tn contact with the matnx lgament since the
ransverse conraction of the mamx is higher than that of the
fibers. and this reduces the hydrostauc stresses ciose (o the
interface. The effective siress. Fig. 7b, vanes mere than for
the FP/Al svstem and has the highest value 1n the hgament

close o the slipping interface. However. the high

conceatration is confined 1o a very small region. It has been

\/\\ observed thar slip-bands are initated at this jocanon{Jansson et

al, 1991a).

) Hydrosuaac stress Oy (MPa. The distmbution of the damage parameter D. defined by

; T equation (2), is shown in Fig. 8a for the FP/Al system and 1n
% \ \ s Fig.8b for the SCS6/Ti system for a global strain of 1%. This
950 700 strain is close to the observed failure strains of 0.8% and

— 1100 1.2% for the two systems respectively. The region with a

high damage is relatively small for the FP/Al system and is
confined to a band in the middle between the fibers away

from the interface. This explains why the fracture surface

700 observed is covered with the matrix and no bare fibers are
e visible. During the loading, the load carrying capacity of the

5@ 500—-\\ matrix is first lost at the small region with the high damage.

This local loss of load carrying capacity is sufficient o rigger

b) Effective saess & (MPa). a global instability with a shear fracture in the orientation

indicated by the damage zone.

033
B 10<D
1 o08<D<10
[ o05<D<08
O 00<D<05
o Effective plasuc sorar. gy (%r
Fig. 7Smess and Swain  distbunons in the mawnx for fig 8a) Dismbunon of Damage vanable D in the mamx for
SCS6/Tiat ) = 1% FP/Al at €} = 1%




strain of the mamx s reduced onlv 10 | 2% fatlure swain
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For the SCS6/Ti system the region with 2 high damage is
localized o the matrix ligament between the fibers. Fracto-
graphical observations [Jansson et al. 1991a] also supports
the result that the ductile fracture is localized to planes in the
ligaments within the portion that has a sliding contact with the

fiber.

CONCLUSIONS

Tue strength of the matrix-fiber interface has a pronounced
effect on the transverse properties of metal-mawmix composites.
In the case of a strong bond with FP aluminum as an example,
the ransverse swength is 30% greater than the mamix strength.
This increase of stress is the consequence of the hydrostatic
stresses developed in the matrix. However. the beneficial
influence of the hydrostatic stress in increasing the strength of
the martrix also has the dramatic effect in reducing the 30%
ductility of the martrix by a factor of 40 to the 0.8% failure

strain observed in the composite.

The weak interface of the SCS6/Ti-15-3 composite results
in a transverse composite strength which is less than half of
the matnx strength. However, the effect of the smaller

hyvdrostatic stress in the matrix means that the 2.8% failure
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LOCALIZATION DUE TO DAMAGE
IN TWO DIRECTION
FIBER REINFORCED COMPOSITES

Frangois HILD
Per-Lennart LARSSON
Frederick A. LECKIE

Abstract: Fiber pull-out is one of the fracture features of fiber reinforced ceramic matrix
composites. The onset of this mechanism is predicted by using Continuum Damage
Mechanics, and corresponds to a localization of the deformations. After deriving two
damage models from a uniaxial bundle approach, different configurations are analyzed
through numerical methods. For one model some very simple criteria can be derived,
whereas for the second one none of these criteria can be derived and the general criterion

of localization must be used.
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1. Introduction

Ceramic Matrix Composites (CMC’s) can either be reinforced by fibers in one direction or
by fibers in two directions. The aim of this paper is to study composites reinforced with fibers in
two perpendicular directions by extending a previous study on CMC’s with fibers in one direction
(Hild et al., 1992).

The rupture of most of the CMC's involves two separate failure mechanisms. The first
mechanism is matrix cracking. The matrix cracks develop and their density saturates as the load
level increases. The second mechanism is fiber breakage accompanied with fiber pull-out.
Enventually, the final rupture will take place around one of the martrix cracks: it correponds to
localized fiber pull-out due to fiber breakage. The occurrence of this mechanism corresponds to
the appearance of a macro-crack and will be described by a localization of the deformations. The
initiation of macro-cracks in a structure during service often constitutes the early stage of the final
failure of the structure. Starting from a material that is assumed free from any initial defect, the
initation of macro-cracks can be predicted using Continuum Damage Mechanics. The driving
force is fiber breakage, which is accompanied by distributed pull-out. The approach using
localization has successfully been used for ductile materials (Billardon and Doghri, 1989a,b;
Doghri, 1989). The initiation stage is considered as the onset of a surface across which the velocity
gradient is discontinuous. Under small deformation assumptions, this phenomenon is mainly
driven by the damage mechanism that causes strain-softening. For CMC's, the damage mechanism
1s related to fiber breakage, and the damage variable describes the percentage of broken fibers (Hild
etal, 1992),

Although localization can be studied at the scale of fibers bonded to a matrix through an
interface (Benallal et al., 1991a), i.e. at a micro-level, localization also caa be analyzed at a meso-
level, when the material is assumed to be homogeneous. Continuum Damage Mechanics, which
represents a local approach to fracture (Benallal et al., 1991b), constitutes an efficient tool for this

purpose. The progressive deterioration of the material is modeled by internal variables defined at
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the meso-level. These variables are called damage variables. The damage state and the evolution of
these variables is obtained through a uniaxial study based on fiber breakage (Coleman, 1958: Curtin
1991). A 2-D plane stress analysis is performed based on an extended model. The loss of
uniqueness and the localization are studied for shear free states. A criterion referring to a cnitical
value of the damage or to a maximum normal stress can describe the localization, which constutes

an objective criterion, from a design point of view.

2. Localization and Loss of Uniqueness

The failure at a meso-level, with the initiation of a macro-crack, is defined as the bifurcation
of the rate problem in certain modes, viz. the appearance of a surface across which the velocity
gradient is discontinuous (Billardon and Dogh:., 1989a). This phenomenon is referred to as
localizarion, and corresponds to the failure of the ellipticity condinon. The condidon of localization
can also be compared to the loss of uniqueness of the rate problem.

Stationary waves were studied by Hadamard (1903) in elasticity, by Hill (1962) and Mandel
(1962) in elasto-plasticity. Rice (1976) related the localization of plastic shear bands to jumps of
the velocity gradient. Borré and Maier (1989) have given necessary and sufficient conditions for
the onset of modes inside the body, who extended the results given by Rice (1976) and Rice and
Rudnicki (1975, 1980).

Under small strain assumption and in elasticity coupled with damage, the behavior of a

material is assumed to be described by the following piece-wise linear rate consttutive law

f13
(Do
=
e
]
o

=, = ) (1)
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where & and :::rcspectively denote the stress and strain rates, = and = are fourth rank tensors, = 1s
assumed to be positive definite, and D is either a single damage variable or a set of damage
variables.

Localization occurs inside the body, if and only if (Rudnicki and Rice, 1975: Borré and Maer,
1989; Benallal et al., 1991a)

Det (n.=.n) =0 for a vector n=0 and at a point inside a structure {2 (2)

This criterion corresponds to the failure of the ellipticity condition of the rate equilibrium equanon;
it also can be used as an indicator of the local failure of the material, at a meso-sczle (Billardon and
Doghri, 1989a).

Furthermore, any loss of uniqueness, considered as bifurcation of the rate boundary value

problem, is excluded provided

T:£>0 3)

In this study, the quantity that defines loss of uniqueness and localization is the linear tangent

modulus . In the following, we analyze loss of uniqueness and loss of ellipticity (i.e. localization)
for states when

En=a&y

€12=0 @)

The parameter o is referred to as the strain ratio and its inverse is denoted by 8. These particuiar

states only are considered. When the hypothesis of Eqn. (4) is satisfied, the non-vanishing

components of the vector n are nj and nj, and the matrix A = n.=.n reduces to (Ortiz et al., 1987)
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niHy111+n3H 212 nyna(Hp2p2+H1122)

~ o
ninz2(Hy212+H2211) njHi212+n3H2222

if we rewrite (ny,n2) = (cos8,sinB), X = tan26, then the localizaton condidon is equivalent 10 finding

real positive roots of the following equaton

aX2+bX+c=9 (6)

with

a = Hjz12H2222
b = Hjj11H2222 — Hi122H2211 — Hi122H1212 ~ H2211Hi212 (7

c=Hj212H111

If real positive roots are found, then the localization direction is perpendicular to the ve tor

(n1,n2,0) = (co*8,51n0,0), characterized by the angle 0 (Fig. 1). The values of Hy111, H2222, Hy122,

Ha2211 and Hj212 are model dependent ar.1 specific models are now developed.

3. Constitutive Laws<

This section is concerned with the development of two constitutive laws in the case of
CMC’s reinforced in two perpendicular directions. At constant temperacure, the behavior of a
CMC reinforced by unidirectional fibers in the x7-direction (see Fig. 1) can be characterized by the

Helmholtz free energy density g, which is a function of the state variables €41, €32, €17, and the

damage vaniable D3 in the x,-direaon
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PW2 = PY(E},E22.€12.D0.02.k2) (8)

where Ds represents the fiber degradation in the x2-direcnion, E2 the Young's modulus in the
x»-direction, V12 the Poisson's rato, k7 the ratio of the Young's modulus in the fiber direcuon (E»)
to the Young’'s modulus in the transverse direction (Ej), and Gy the shear modulus. It 1s worth
noting that the elastic quantities depend on the volume fraction of fibers. The expression for the

general Helmholtz free energy density v is given by

2+ 2vygki I—d)xy + ky?
pu(y.zd Ll =50 | K IO S
k { 1-vizk(1i-0) }

+ 201222 (9)

where p is the material density, x,y,z are dummy variables representing strains, d damage, f volume

fracton, and k Young's moduli rato. The stresses and the thermodynamic force Y7 associated to the

damage variable D; are derived from the Helmholtz free energy density w3 as follows

_ w2 _ vz _ o2
=P 35, o2 =P 3627 2012=p 3e12 (10)
Y2=ng5%

The explicit expressions for the stresses related to the strains and the damage vaniable modeling the

fiber degradation in the x2-direction are given by

E>
Oy = [E11+V12(1-D2)k2€72]
ka[1-V5(1-Do)ka]
E2(1-D7)
G2 = %‘ 2 (E22+V12€11) (11)
1-v5(1-D2)kz
O12=2G12€12
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The damage state of fiters in the x2-direction, D2 can be related to the stress (and 1s denoted
D Ce -
by D(:l)) or strain stite (and is denoted by Dg_,”)). The relatonship 1s either implicit in terms of the

normal stress in the x2-direction (model #1)

. m+1 .
Dg)=l—exp{—{———g‘——} } if €27>0and €2, >0 (12)

where m is the shape parameter of a Weibull law (Weibull, 1939), O the characteristic saength
(Henstenburg and Phoenix, 1989), and f3 is the volume fraction of fibers in the x2-direcuon; or

explicit in terms of the normal strain in the x2-direction (model #2)

m+1 .
D(22) =1- cxpl:— (%) } if€xn>0and€2>0 (13

where €. is related to the characteristic strength O by O = Er € (EF is the Young's modulus of
the fibers). Both models describe the same material behavior when subjected to uniaxial tension.
However the models give different predictions for multiaxial loading states (Hild et al., 1992). Iris
worth noting that the damage evolution laws are a priori independent of the volume, since we
assume that the local behavior of the fiber degradation is not dependent on the total length of the
fiber (Curtin, 1991). This type of behavior is observed when distributed pull-out happens in
conjunction with fiber breakage, and it can be shown that in most practical cases, the staustics
driving the fiber breakage is independent of the total length of the composite. On the other hand, if
the composite length becomes very small, a length dependence is found again, and in this case the
evolution of the damage variable is mainly given by a fiber-bundle-type of behavior, whici leads to
replacing m+1 by m, the charactenistic strength G by Gg (L/Lg)V/m, where Oy is the scale parameter

of a Weibull law, and the scale strai- € by £g (L/Lg)1/m , where Lg is the gauge length at which the
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scale parameter has been identified, and Og = Ef €9. Since the results are the same for both damage
evolution laws when the previous permutation is used, we will just express them in the case when
the model is length independent, which is the most relevant in practce.

If the fibers are in the x)-direction then the breakage can be modeled by a damage vanable
denoted by Dy. Using Eqn. (9), the Helmholtz free energy density py is given by

PV = pY(E22.€11.€12.D1.f1.k1) (14)

If the fibers are in both x}- and x-directions, then we assume as a first approximaton that

the total specific Helmholtz free energy py 2 is given by a law of mixture of the Helmholtz free

energy densides in the x- and in the x»-directions
pv12 = (1-Dpy1 + fpy? (15)

where f is the fraction of fibers in the x»-direction (f=f2/(f;+f3), and where f} and f are the volume
fraction of fibers in the x1- and x»-direction, respectively). This assumption also corresponds to a

Lin-Taylor Hypothesis. The evolution of the stresses is given by

v
o1 =P§$ = (1-)S11 + fS12

d
022=P§% = (1-)S21 + S22 (16)

Cina=p %\g—g =2G12€12

where the explicit expression for §j; is given in appendix 1, and the corresponding thermodynamic

forces associated to the two independent damage variables D and D are
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o dyir V] .
Y]—p‘gwb—l—(l—afzvpyp—l (17)
. vz 2
Y2=p 9D, _fpaDz

Again, the evolution of the damage variables can either be implicit in terms of the respecuve normal

stresses (model #1)

- ¢ - -

o1 m+1

rerpvo if€,;>0and €;; >0 (18)
(1-bD{)fioc

D(ll) =1- EXp| — 4

- - ~ -

O m+1

(1) . .
Dy =l-exp|—-{——p— ¢ if€3p>0and €3 >0
(1-D3 )20 |

or explicit in terms of the respective normal strains (model #2)

. -
£ m+] .
D = 1- exp| - (—e‘c—‘) if€;;>0and €, >0 (19)

m+1l .
D' = 1-exp| - (%?) if €5 >0and €57 >0

It is worth noting that we assume that the statistical properties of the fibers are supposed to be
identical in both directions. This hypothesis will be maintained throughout the paper since
generalization would be straightforward. Both models are studied for shear free states when the

strain rato « (see Eqn. (4)), and thus its inverse [ are given.

3.1. Failure Criteria for Model #1

For model #1, the evolution of the damage vanables is implicit in the sense that D(ll)

(respectively Dg_l)) is a function of the normal stress G (respectively G32) and the damage variable
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D“ll) (respectvely D(zl)) uself. The evolution is therefore computed by a numenical scheme based

upon a Newton method. To study localizaton and loss of uniqueness, we need to compute the

tangent operator, which takes the following form

[(A-DOFyy + fF12] (1 + fFs52F72) — fF2aF77 [(1-HF4, + {F42]

Hin = [1+fF21F72 J(1 + fFs2F72) — f(1-H)F22F72F 5, F7y
Hago = [(1-DFe1 + fFe2] {1 + (1-DF21F71] = (1-0OFs1F7y [(1-DF 41 + {F42]
e [1 + fF21F72 J(1 + fFs52F72) — f(1-H)F22F72F51F7)
Hyjz = [(1-DF41 + fFa2] (1 + fFs2F7) — fF22F72 [(1-1)Fe) + {Fe2) 20)
[1+ fF21F72 )(1 + fFs2F72) ~ f(1-f)F22F72F51F7)
Hony; = [(1-DF4y + fF42] [1 + (1-D)F21F71] = (1-H)Fs51Fy [(1-HF ) + {Fy2]

[1 + fF21F72 ]J(1 + fF52F72) = f(1~-f)F22F72F51F 74

Hi212=2Gy2

where the explicit expressions for Fjj are given in appendix 2.

The loss of uniqueness and localization are investigated when the fiber fraction f and the
strain ratio  vary. Although analytical results cannot be derived from criterion (2) in the general
case, some simple results can be found when f is equal to O or 1. In these cases, the criteria derived
by Hild et al. (1992) apply. If f is equal to O (fibers only in the x;-direction), then localization and
loss of uniqueness occur at the same load level when

1 -1
D(1 )= De= 1~ cxp(m)

1 \I/(m+1)
C11=0u =i O’c(mJ (21)
2
Gul

" 2E;(1-Dc)?

Y]’—'Yc

where the stress Oy corresponds to the ultimate tensile swength in the xy-direcuon. It is worth

noting that the three previous criteria are easier to compute than the general critenion (2). The
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direcdon of localizaton is 8 = 0°, i.e., a localizanion surface perpendicular 10 the fiber direction . If f
is equal to 1, the same kind of result apply and the direction of localization 1s 8 = 90°, i.e., a
localization surface again perpendicular to the fiber direction . When f#0 and f=1. these results
cannot be proved. However the compu.ations show that loss of uniqueness and localization can be
described very accurately by the two following criteria

-1
Max®@{’ D) =D, = 1- exp(m) (22)

G11=0y1 or 02=0y 23)

when the fiber properties are the same in the two directions. The maximum error is .5% in terms of
criteria (22), and (23).

Criterion (22) shows that for model #1, maximum damage at localizarion depends only on
the Weibull exponent of the fibers. Furthermore, criterion (23) shows that the maximum normal
stress O] (respectively 022) depends only on the volume fraction of fibers in the x- (respectively
x2-) direction and on the fiber characteristics. This result is consistent with some experimental
observations on woven carbon matrix composites reinforced with SiC (Nicalon) fibers (Heredia et
al., 1992). On the other hand, the localization angle is dependent on the fiber percentage f (see Fig.
2). When the fiber percentage f and the sign of the strains €11 and €27 are constant, the variation cf
the localization angle is due to the fact that the maximum tensile stress is either reached in the x}- or
in the x3-direction.

Moreover, if the strain ratio « is different from O and 1 then there is a complete symmetry
of the results. If the strain ratio @, the strains €1 and €3 are positive, changing « into B, f7 into fy,
changes f into 1-f, and alters the absolute value of the localization angle 16} into nt/2 — 16 and keeps
the maximum stresses and damage levels constant. These two properties are referred to as
svmmetry properties, and are mainly due to the features of Eqns. (4), (8), (14) and (15).

When the strain ratio « 1s equal to 1 and the fiber percentage f is equal to .5, the localizaton
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angle is undetermined. This is due to the vanishing of the three constants a, b, and ¢ in Egn. (6), for

Hi111 = Hy122 = Ha211 = Hao22 = 0. Any value of the angle 6 satisfies Eqn (6). This
phenomenon can be observed when the fiber percentage f is different from 1: if G3] = Gy and O
= O\» simultaneously, then D(ll) = D(zl) = D¢, and Hyj11 = Hy122 = H2211 = H2222 = 0. This
particular result shows that in terms of this model, for a given strain ratio a, it is possible 10
optimize locally a CMC reinforced by fibers in two perpendicular directions. Indeed, in terms of
fiber breakage, a condition G = Oy and G722 = Oy2 leads to an opumum of the fiber behavior in
both directions.

Model #1 constitutes a straightforward generalization of the fiber bundle models studied by
Krajcinovic and Silva (1982), and Hult and Travnicek (1983). Finally, a shear stress has no
influence on all the previous results since we assumed no coupling between the damage variables

and the shear strain or stress for both model #1 and #2.
3.2. Study of Localization with Model #2

For model #2, the evolution of the damage variables is explicit and therefore is easier to

compute. The tangent operator takes the form

Hin = (-H(F11—F21 F31) + fFy2

H2222 = (1-)F2 + f(Fa2— Fs52 F32)

Hi122 = (1-DFa) + f(Fa2- F22 F32) (24)
Ha = (1-H(Fa1- F21 Fa1)  + fFa2

Hi212 = 2Gi2

where the explicit expressions for Fj are given in appendix 2. As shown in the case of fibers in

only one direction (Hild et al., 1992), the localization critenion cannot be described by some simple
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criteria as those given by model #1. When fibers are in both directions the latter results are
confirmed. A first consequence is that an optimization procedure can be performed since the
maximum stress at localizaton, and the maximum damage at localization are dependent on both the
strain ratio @ and on the fiber percentage f.

Since the elastic law given in Eqns. (16) is identical for both models, the symmetry
properties apply also for model #2 (see Figs. 3, 4, and 5). It can also be noticed that the maximum
stress at localization varies with the fiber fraction f and with the strain ratio o

In the experiments reported by Heredia et al. (1992) the stress at localization was given by
the ultimate tensile smength corresponding to the volume fraction of fibers in the same direction.
This is not found by using model #2. Indeed, in a tensile test, when f] = f2 =.5 the maximum stress
O22 normalized by the ultimate tensile strength Gy2 is given by .63, whereas the same tensile test
when f1 =.0 and f; =.5 would give a normalized tensile strength G72/Gy2 equal to 1. On the other
hand, the damage at localization D7 normalized by the critical damage D, is equal to 1.04 when f]
=.5 and f2 =.5 and is equal to 1. when f} =.0 and f3 = 5.

It is too early to draw a final conclusion, but it seems that the predictions of model #1
correspond more to reality than those of model #2. On the other hand, model #2 tumed out to give
results very close to model #1 when applied to structures with fibers in one direction (Hild et al.,
1992). This will be addressed in the case of structures with fibers in two perpendicular directions

such as spinning discs.

4. Conclusions

Using a one-dimensional study of fiber breakage modeled by a single damage variable, two
models are derived. Both of them are then generalized to a 2-D plane stress analysis, with fibers in
two perpendicular directions. Whereas model #] constitutes a straightforward reneralization of the
elementary study, model #2 exhibits different features. Indeed, loss of uniqueness and localization

can be described by some very simple criteria referring to Continuum Damage Mechanics for
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model #1. Conversely, these simple criteria do not apply for model #2. Physically, model #1 gives
a better description of some experimental trends observed in the case of a carbon matrix reinforced
with silicon carbide (Nicalon) fibers in two perpendicular directions. On the other hand, model #2
1s easier to compute, and when applied to the study of spinning disc with fibers in one direction, it
leads to load levels at localization of the same order of magnitude as model #1 (Hild et al, 1992).
Lastly, this study shows that the localization for model #1 can be described by using
criterion (23) derived from the general criterion of localization (2). This criterion can also be used
for a computation in elasticity and may turn out to be sufficient in first approximation to predict
load levels at which at macro-crack initiates, instead of using a computation in elasticity coupled

with damage. This work is still in progress and will be presented in a subsequent publication.
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Appendix 1

Eqx(f
Ky = % l1)
Ea(f>
ky = :él)
Ex(1)(1~Dy)
Su= (E11+V12€22)
1-v5(1-D)k
Ea(f2)
Si2= 5 [E11+V12(1-D2)k2€22]
ka[1-Vy5(1~-D2)ks]
Ea(fp)
Sy = [€22+V12(1-Dk1€11]
k1[1-V5(1-D1)ki)
E2(f2)(1-D
Sy = 202){1-Do) (€22+V12€11)

1-v5(1-Da)kz
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Appendix 2
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Figure Caption

Figure 1: Localization mode.

Figure 2: Absolute value of the localization angle in degrees at localization for modei #1, the main
caption of the axes corresponds to the case where f; = .5, f; = .0,.125,.333,.5, and the
captons in brackets correspond to the cases where f; = .5, f» = .0,.125,.333,.5.

Figure 3: Normalized maximum stress at localization for model #2, the main caption of the axes
corresponds to the case where f3 = .5, f1 = .0,.125,.333,.5, and the captions in brackets
correspond to the cases where ., =.5, f2 =.0,.125,.333,.5.

Figure 4: Absolute value of the localization angle in degrees for model #2, the main caption of the
axes corresponds to the case where f3 = .5, f] =.0,.125,.333,.5, and the captions in brackets
correspond to the cases where f1 =.5, f2 = 0,.125,.333,.5.

Figure 5: Maximum normalized damage value at localization (m=4.) for model #2, the main caption
of the axes corresponds to the case where f3 = .5, f] = .0,.125,.333,.5, and the captions in

brackets correspond to the cases where f} = .5, f2 =.0,.125,.333,.5.
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ON THE NOTCH-SENSITIVITY AND TOUGHNESS OF A
CERAMIC COMPOSITE
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ABSTRACT

A Nicalon TM/SIC fabric (8-harness satin) reinforced alumina
matrix (CMC) was loaded in tension to (racture. A coating on
the surface of the fibre reduced the strength of the fibre-
matrix bond, increzsed the fibre pull-out length and toughness
of the OMC by more than 3 times, and raised the unnotched
strength by more than 2 times.

1. INTRODUCTION

The development of ceramic-matrix composites (CMC) for general engineering
usage must address the inherent notch-sensitive characteristics for which most
unreinforced ceramic materials are notorious. For most polymeric matrix
composites (PMC) the subject of notch sensitivity is quite well understood and
characterized (1). With the more rigid matrix of (MC's the general design
approaches must not be too strongly influenced by PMC experience and the
possibility of closer attention to the microstructural characteristics, and
particularly the fibre/matrix interface, 1is required. One example of a
potential CMC-specific design criterion is the importance placed on limiting the
tensile stress or strain to a level below which matrix cracking will be
precluded, particularly when the ambient service environment degrades the
reinforcing fibres.

2. MATERIALS

For a preliminary experimental evaluation specimens of a Nicalon TW/SiC
fabric (8-harness satin) reinforced alumina matrix CMC was obtained. The CMC
was produced by an aluminium oxide-based slurry process wherein the ceramic
fibre fabric is drawn through a matrix bath to form preimpregnated layers.
These layers are stacked and heated under pressure to establish a well-bonded
laminate before firing to the finished CMC condition. The final CMC comprises
typically 45X fibre volume fraction with 15-20X void fraction (porosity). In
some samples, the Nicalon fibres were coated with boron nitride (BN). Specimens
were cut from four plates of 1.5 mm nominal thickness using a conventional
water-jet system.




Specimen configurations of unnotched and notched type
illustrated in fig. 1 included a standard “dogbone” and two double edge notched
(DEN) geometries. For comparative purposes, a tensile specimen containing a
central hole was tested.

T
83mm
X
b= 2 Srryn end P S Mmaey Poeng STYT atnd
(A) Unnotched (B) Blum (C) Shamp

Fiq.4 Specimen Configurations

In the experiments -nsile loading was introduced using adhesively bonded
aluminium end tabs anc .1 .MTS servohydraulic universal testing machine or an
Instron servomechanical machine. Displacement control was adopted in both cases
using an unclamped gauge length of 150 wm and an actuator velocity of 0.05
mm/min. Strain/displacement measurement was recorded by centrally mounted 10 mm
clip gauges. Three replicates were used for both the notched and unnotched
specimen configurations.

3. RESULTS

Results of the CMC testing are presented in Table 1 and Figure 2 and,
despite the limited data, clearly indicate the superior performance of the
coated fibre system relative to the uncoated system. The coating essentially
provides a reduced fibre/matrix bond strength shown by longer fibre pull-out
lengths (fig. 3). A similar ratio of unnotched to notched strength for the
semicircular notch configuration of both strengths are much higher for the

coated fibre condittioun. Furthermore, the sharp slit notched DEN specimen
results indicate no significant effect of notch acuity for the coated fibre
condition (see Table 1). The data point on the fig. 2 representing a ratio of
flaw size-to-specimen width of 0.2 was for the configuration of a centrally
located open hole. Of interest here is the location of the data points relative
to the notch-insensitive and ideally notch-sensitive curves. Observe that the
uncoated OMC specimens with the slit DEN configuration exhibit classical notch~
sensitivity.
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Table 4 Results of exploratory investigation of the notch sensitivity
of bi-direcnonally reinforced CMC.
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Figure 2 Results for preliminary notch sensitivity assessment of CMC.




All specimens tested displayed substantial nonlincarity in stress/strain (for the unnowhed
condition) and stress/displacement (for the notched condition) but post-tailure
examination by scanning electron microscopy revealed surface roughness with extensive
fibre pullout for the coated specimens (fig. 3). Failure surfaces for the uncoated samples
were constderably smoother (fig. 3).

"Strong” bond




"Weak" bond




4. DAMAGE MECHANICS AND FRACTURE TOUGHNESS

A further point of interest concerns the notch tensile strength which, for
the DE¥ configuration with a slit (sharp) notch of length a, is given by the
equation (assuming isotropy):

x

(1)

g =
n

5

where thz ",nite specimen width correction factor YDEN = 1.98 + 0.36 (g-ig-)

2 3
- 2.2 (32) +3.42 (33) and K, = Fracture Toughness.
2a 2a,?
For the center cracked plate (CCP), YQ‘JP =1.77 | 1-0.1 (-‘7--) + (T)

2
By substituting the nominal dimensions of the DEN specimens, {.e. —79' = 0.5, we

obtain;

YDB‘ = 2.06 and Y(I.','P = 2.12

Finally, by adopting the simple notch tip damage zone concept of macroscopic
fracture mechanics introduced by Waddoups, Eisenmann, and Kaminski (2) and
utilizing the preliminary notched, o, and unnotched strength, o, data from

n
Table 1:

Ke Ke
o = , 0=
v a*ao

(2)

o n
Vr, YDEN
where a  Trepresents the dimension related to the size of the notch tip damage

zone which for an unnotched sample can be thought of as equivalent to the
"inherent” flaw size. Next, we obtain

o, Ve, 2
== = 0.86 ava (3)
o YDEN \/amo o

Hence, a value of a = 1.17 mm is implfed.

Using equation (2) a fracture toughness for the coated COMC material fis
estimated as:

_ COATED
Ke = 8.66 MPa vV NC

Following a similar procedure the fracture toughness for the uncoated CMC
material is estimated as:

_ UNCOATED
Kc_z.sonPaJi G

with a value of a = 0.54 mm,




Clearly, further research is required to substantiate the above and extend the
correlations for a range of notch sizes and configurations. More extenstive
microscopy is required to establish reasons for the shortfall in strength of the
“uncoated” fibre laminate which {s suspected to be due to fibre damge incurred
during processing. Thus, an opportunity exits here for material enhancements
through improved processing techniques and to further investigate {{bre/matrix
interface phenomena.

Some of our exploratory fatigue testing on notched specimens with coated
fibres at cyclic loads corresponding to 50X and 80X of static notched strength
suggested that residual strengths after 10° cycles were negligibly different
from the initial static strength. More extensive research is i1equired before
any general and definitive conclusions can be drawn on this subject however.
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i.  INTRODUCTION

The high strength/weight ratio and thermal conductivities of metal matrix composites
are properties which make them attractive for application in modern components for which
low weight and good thermal efficiency are essential. An intrinsic difficulty in establishing
the mechanics of these materials is that they are at a very early stage of their development
when changes in their manufacture are frequent and many. As a consequence the amount
of material available for comprehensive testing is limited. Furthermore, the test specimens
tend to be small and have high strength so that problems associated with gripping are
considerable. Consequently, the mechanics describing the behavior of metal matrix
composites must be achieved with only very little information. However, the recent
advances in computational techniques combined with established mechanics principles are
helpful in establishing the material properties and their effect on component performance.

This paper shall describe some of the advances with special reference to the properties
of a composite consisting of an aluminum-lithium matrix reinforced with continuous
alumina fibers. This material combination is distinguished by the strong bond which exists
between matrix and fiber so that stress and displacement continuity conditions may be
assumed. Attemnpts shall be made to describe the general approach which is being
developed. It should be emphasized that the procedures are not fully developed but

sufficient progress bas been made to believe that the prospects of success are high.

M Zvczkowsks (Ed )

Creep in Structures
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€. Springer-Verlap Berlin Hewdetberg 199)




504

diminished or even lost if mulu-laminate svstems are adopted. Consequently, if full
advantage is to be tuken of the dominant strength charactensues then the fibers should be
aligned in the direction of maximum stress transmission. In this circumstunce the
rransverse properuces of the material are also important since there must be sufficient
strength in the matrix to suppon the secondary stresses applied in the transverse direction.
In addinion to the strong bond existing between the fiber and the n:--vix another irnportant
feature of the composite is the large mismatch in the coefficients of thermal expansion so
that fluctuations in operating temperature induce substantial thermal siresses. It is the goul
of this study to establish the behavior of the composite when subjected to transverse stress
and cycles of temperature. This study shall be used to illustrate how the shakedown
concept can be used to describe the material behavior when subjected 1o the described

loading conditions and when creep effects are also important.

2.  EXPERIMENTAL PROGRAM

The composite studies is Du Pont's FP/AL with continuous fibers in a unidirectional
lay-up. The fiber volume fraction was determined tto be 55%. The FP fiber consists of
99% pure crystalline a-alumina (Aly03) coated with silica that improves the strength of the
fiber and aids the wettting by the molten metal. The fibers have a diameter of
approximately 12 pym, a modulus of 345 to 380 GPa, a tensile strenth of 1.910 2.1 GPa for
6.4 mm gauge length, and a fracture sttrain of 0.3-0.4%. The matrix material is a 2 wt%
Li-Al binary alloy. The modulus is 68.9 GPa and Poisson's ratio is 0.32 The lithium
promotes the wetting of the alumina fibers that forms a strong matrix-fiber interface. The
composite is fabricated by preparing the FP fibers into tapes by using a fugitive binder and
the tapes subseqnelty laid up in a metal mold in the desired orientation. The binder is
burned away and the mold is vacuum-infiltrated with the molten matrix. The composite
was available in the form of a plate 150 x 150 x 12.5 mm thick.

The specimen used for transverse tests is shown in Fig. 1. It has a relatively large
radius at the transition from the gripping section to the reduced gauge section to provide a

low .iress concentration and a short specimen to prevent specimen buckling during
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compressive loading. The gauge section is 10 mm long and 6 mm wide and 2.4 mm thick.
The strains were measured with 3.2 mm strain gauges. Specimen was loaded by an M. T,
S. hvdraulic machine and it was heated by means of induction coils. The control of the
temperature was achieved by using thermocouple measurements..

The tests reported in this study involved a constant transverse stress in combination
with cycles of temperature with cycle time 150 s. The temperature and strain varniations
were continuosly recorded.and a typical example of the accumulanion of strain is illustrated
in Fig. 2.

The transverse stress strain curve at room temperature is shown in Fig. 3, from
which a deviadon from linearity is observed to occur at 75 MPa. The tultimate strength is
200 MPa and the strain to fracture is 0.8%. The ultimate strength is about 50% higher than
the ultimate matrix strength while the failure strain of 0.8% is only 4% of the failure strain
of the marrix [Sakui and Tamura, 1969] A representative test for the constant transverse
stress and cyclic temperature is given in Fig. 2 which indicates that ransient behavior is
followed by a cyclic response for which there is an increment of strain after each cycle,
i.e., ratcheting occurs in both examples. Similar tests were performed at different values of
constant transverse stress and temperature cycle. In Fig. 4 contours of constant values of
dep/dN are plotted, where & is the plastic ratchet strain and N is the cycle number.

There are combinations of o and AT for which no ratcheting occurs when the inital
transient reponse is followed by elastic cycle reponse. This condition is indicated in Fig. 4
as the shakedown condition. When the operating conditions exceed the shakedown
condition ratcheting occurs at rates indicated in Fig. 4. The failure swrain was observed to
vary according to the operating condition as indicated in Fig. 5. The failure strain is 0.08%
for high stress and low thermal load whereas for low transverse stress of 30 MPa the
failure strain reaches 12%. Microscopic examination of the failure surface indicates the
presence of voids in the matrix, with no evidence of damage in either the fiber or fiber-
matrix interface. This observation suggests that the failure mechanism in the matrix is

associated with void growth.
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The contours of constant ratchet strain rate plotted in Fig. 4 are generally parallel 10
the shakedown surfuce. This observauon suggests that the driving force which drives the

ratchet strain rate is given by

where T and 0 are the ordinates defining the shakedown condition. The relationship of

dsp/dl\’ has the form

% - @)
w°
where f(&t) is linear for small values of o and increases exponentially as a approaches the

value I - Fig.6.

3. COMPUTATIONAL STUDIES AND THEIR IMPLICATIONS

The homogenization technique has been widely developed and can be used to predict
the composite stress-strain response. The procedure can then be used to determine the
response to the different loading which form the basis of developing constitutive equations
Jansson [1990a}. A difficulty with the approach is the lack of properties of the
constitutents of the composite when they are subject to a complex history of time «nd
temperature during the manufacturing process.

The elastic properties of fiber and matrix are not greatly affected by the history of
processing and heat treatment of the composite and this makes it possible to use data from
the literature. However, the flow properties of the Al-Li matrix alloy are strongly
dependent on heat treatment and cold-working [Stark et al., 1981 and Sikui and Tamura,
1969]. Details of the processing and post heat treatments of the composite are not availble.
Hence, the exact state of the matrix is not known and the information is insufficient to

extract the flow properties of the matrix from the literature. This leaves as the only option
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to determine the flow properties of the matnix in the composite is 1o fit a calculated
response, by varying the flow propoerties of the matrix, to an experimentally determined
matrix dominated swress strain curve for the composite. This procedure has been performed
by Jansson [1990b] who determined that the initial yield stress of the matix is 94 MPa
with a hardening exponent n = 5 (Fig. 3). The matrix properties were then used to predict
the performance of the compsite when subjected to shear and multiaxi! stress loadings. The
predictions of the computations agreed well with the experimental observations and

provided confidence that predictions of the computations using the matenal data from one

experiment could be applied to different loadings. In practice this could lead to significant
savings since complex testing programs may be avoided.

The present composite consists of long fibers in a unidirectional lay up that are
randomly distributed in the transverse plane. In the model to be analyzed the fibers are
assumed to be long parallel cylinders arranged in a hexagonal array, Fig. 7. This peniodical
array has the mechanical properties with the closest symmetries to randomly distributed
fibers that are transversely isotropic. Both systems are transversely isotropic when the
constituents are linear elastic but the hexagonal array has a weak deviation from transverse
isotropy when the matrix exhibits a nonlinear stress strain relation Jansson [1990b]. The
deviation is most pronounced for a perfectly plastic matrix. However, reasonable results
can be expected if effective properties are calculated for loadings that do not permit slip
planes unconstrained by the fibers. This resembles the closest condition to a composite
with randomly distributed fibers.

In the present calculations the fibers are assumed to be linear elastic and the matrix
behavior is modelled with a small strain J, perfectly plastic theory using the properties
given in Fig. 7.

The goveming boundary value problem for the effective properties of the unit cell is
two dimensional and has been solved with the inite Element method. The displacement
field is interpolated with nine nodes isoparametric elements and reduced integration is used
to avoid locking, 2 x 2 for the hydrostatic component and 3 x 3 for the deviatoric

component of the stress tensor. The nonlinear systemn of equations is solved with a
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Newton-Raphson scheme. The loading of the unit cell, Fig. 7, is symmetnc with respect
to the yy and y5 axis. This implies that only an eighth of the indicated unit cell need be
analyzed. A derailed description of the finite element mesh of the implementation of the
method and deviations of the boundary conditions for different loadings are given in
Ja: -<on [1990a].

In performing the elastic-plastic calculation it was possible to determine the
shakedown boundary defined in Fig. 4. This has been expressed in terms of the
dimensionless loadings EAaAT/oy and OT/Oy- In terms of the material parameters for the
present system the experimental determination of the shakedown surface is also shown in
Fig. 4. The agreement is reasonably good but it is noted that the experimental results
indicate a straight line relationship exists between AT and G whereas the computed
boundary is somewhat convex. The differences in the experimental and computational
predictions is likely to be related to deficiencies in the constitutive model for the matrix.
The computational procedures involved very heavy computation since more than 100 cycles
are often required before a steady state condition was reached. For this reason no attempt
was made to determine the behavior for operating points outside the shakedown conditon,
and this is left to a bound method developed by Ponter and Cox {1983].

The upper bound applies for loading conditions which exceed the shakedown

condition by a modest amount. The upper bound is given by

_ée_ 2 4Ae
AN

where Ag is the increment of elastic strain given by

Ao being the stress increment in excess of the shakedown condition and E is the elastic

modulus in the transverse direction.
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For the optional point shown in Fig. 4 Ac = 35 MPa and with ET = 150 GPa

{Jansson, 1990] the upper bound as ratchet strain is

_ 4x35

=0.93x1073/ cycle
150

Ae

which compares with the experimental value of 0.5 x 10-3/ cycle.

The failure strain can differ by over an order of magnitude depending on the operating
condition. It is known for Al-Li [Pilling and Rindly, 1986] that ductile failure is the result
of void nucleation and growth from small particles. In the studies of Hancock and
Mackenzie {1976] it is suggested that when failure is the result of void nucleation and

growth the failure strain € ¢ for multiaxial states of stress has the form

g = 1.65£0exp{—§%‘4-} 3

where £ is the uniaxial failure strain, G), is the mean stress and G the effective stress.
The failure strain for the present matrix in uniaxial tension is reported to be approximately
0.2 [Sakui and Tamura, 1969]. Jansson {1990b] has reported in tests on the composite

under consideration that the strain for in-plane shear parallel to the fibers is also 0.2. From
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the computer studies it has been determined that transverse loading alone introduces a

L. ., O . .
multiaxial stress state for which — = 2.5 over a large region of the matrix.
5

Applying the formula for the failure strain gives the failure strain for transverse

loading
E{] = 0.008

which compares well with the observed failure. As the transverse stress decreases the

degree of triaxiality decreases and the failure strain is expected to incease.

4, EXTENSION TO CREEP CONDITIONS

Creep experiments have not yet been performed on the composite but these are now
in hand. However, it is possible to gain some insight into the creep behavior using
bounding
theorems for components subjected to cyclic loading conditions. Based on the Bailey
Orowan theory, constitutive equations which describe the creep strains for variable stress
histories can be expressed by the potential developed by Ponter and Leckie [1976]. The

potential form is given by
Q =F(¢ - s) + G(s)

from which the srain and internal variable rates can be determined to be,

< < to-p) 20 _
&= 1@ P)a%_ [F=1
§$=h@)(9-p)-r(p) [G'= i%}
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where ¢2 = %’Sijsij and  p the internal vanable is a scalar
The function f(¢-p) is defined by

f0-p)>0  whenod=p
=0 when ¢ < p
Following the expression for f(¢ - p) strains only occur when ¢ = p.
For fast loading ¢ = p and
p__P a9

——— a—

%™ n(p) 30,

so that h(p) can be determined from the short time stress-strain curve.

At steady state condiiions p = 0 and

where g is the reference stress and £ is the corresponding strain rate. The above relation
can then be used to establish the function r(p). Following the procedure developed by
Ponter [1976], Cocks and Leckie [1988] found an optimized bound for the creep
deformations when the component is subjected to cyclic loading. The bound applied to the
current problem when the composite is subjected to transverse stress g and cyclic thermal

loading gives the result

-
€y < ~=£(
ou

where G, is the maximum transverse stress corresponding to a matrix yield stress oy

matrix. Reference to Fig. 3 shows the value
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c
=13
o,
y
Consequently
£
g, <=
15

The result only applies when the loading condition does not exceed the shakedown
condition for a vield stress corresponding to the reference stress o, However the
shakedown condition is known for gy and a simple scaling produces the shakedown for the
reference stress Gp. A proviso for the application of the result is that the continuity
conditions between fiber and matrix be maintained. Diffusion mechanisms have been
reported which reduce the shear stress which can be supported at the interface. In these

circumstances the result developed above could be seriously non-conservative.

CONCLUSIONS

It has been demonstrated that the shakedown concept provides useful insight into the
behavior of a metal matrix composite when loaded with transverse stress and cyclic thermal
loading. Itis also shown that a slight modification in which the reference stress is used in
conjunction with the shakedown condition is sufficient to give estimates on the creep

behavior.
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The treatment of fatigue and damage
accumulation in composite design

K.T. Kedward and P. W .R. Beaumont

Differences between the treatment of damage, damage accumulation and fatigue for
various types of advanced composite systems, for example, polymer matrix
compaosites (PMCs}, ceramic matrix composites {CMCs) and metal matrix composites
{MMCs) are discussed in general. The approach for PMCs from the aspect of damage
mechanics is reviewed next and extended to a discussion of various aerospace
certification approaches adopted for PMC structures. Following this is an explanation
of the ther -stical foundations for the ‘'wearout philosophy' in conjunction with related

damac

4 fracture mechanics relationships is provided. This concludes with a

survey of flaw, or more precisely, damage growth rate exponents for various matrix
and/or interface-dominated failure mechanisms for PMCs and adhesively bonded

joints.
Key words: compaosites; damage mechanics; wearout

The process of design has traditionally involved a specialized
treatment of damage accumulation and the associated fatigue
phenomena, for example, Miner’s rule. The trearment of such
phenomena for the case of advanced composites tends to be
complicated by the existence of 2 multiplicity of competing
failure modes. The subjecr assumes an even greater importance
when more types of composite systems are considered, for
example, polymer matrix composites (PMCs), ceramic matrix
composites {CMCs) and metal matrix composites (MMCs)
to name the broader categories. All compasite systems are
considered herein to comprise continuous hbre reinforce-
ments.

Despite wide recognition of the vital importance of
fatigue degradation and the variety of potental damage
accumulation mechanisms existing in complex composite
designs, so-called experienced composite technologists fre-
quentlv state that fatigue is not a problem in PMCs. Such
statements may arise from the general observation thar the
reinforcing filaments are not, in themselves, susceptible to
fatigue damage and consequently fatigue-dominated laminate
designs subjected to pure tensile membrane loadings may
similarly be relatively insensitive to high-cvcle fatgue environ-
ments. However, the industry is frequently experiencing
composite hardware development probiems owing to design
oversights that result in matrix-dominated load paths; a
number of these problems will be cited below to iilustrate
the subtle manncr in which farigue damage may zccumulate.

We shall consider PMCs, since these are the most ‘marure’
composite systems. and an extensive literature base and
background experience exists for chem. Currendy, t may
confidently be stated that the composites industry is able to
design PMC laminates of uniform thickness in a2 rehiable
manner. Extensive experience with PMCs has taught us to
use fibre-dominated laminate designs, which are most often
specified in the [C°/=45%/9C%) or pscudo-isotropic form with
respect 1o the in-plane directions. In-plane compression tailure
1s somewhat of an exception since the matrnix and the

degradation thereof can influence premature fatiure. However,
bv far the largest number of development and in-service
problems with composite hardware is associated with masnix-
dominated phenomena; that is interiaminar shear and vut-of-
plane tension. This is a major concern n that laiure
contributed by either one or a combination of these matrix-
dominated phenomena are susceprible to the following:

{i) high variabilitv contributed by sensitivity to processing
and environmental condiuons, see Fig. 1.

() ‘brircle’ behaviour, parucularly for early cpoxy matnx
systems:

(i) inspectabiiity of local deuwils where flaws or detects
may exist;

(iv)  low reliability associated with the lack of acceprabie

oy

or represcntative test methods and complex. hizhiv
localized stress states (The use of the transverse wnsie
strength of a unidirectional lamunate tor out-of-piane
or through-thickness tensile strength s generals
unconservanve. );

{v) potenual degradation of residual stane strengeh stter
faugue cvelic load exposure.

The development of stress components that induce interlaminar
shearsout-of-piane tension failures is iilustrated wn Fig I
wherein commonplace generic teatures of composize hardw are
designs that frequently exrerience delaminauons are shown
It is at such detals that PMC structures are partcuiarh
vulnerable both under stauc and fangue loading. It s ot
interest to observe, here, that it 15 the propensity tor
delamination and locahized matrin-dominated fasiures that
provides the character of manv PMCs in that the nonh
sensitivity mav be reduced after taugue load cvching for loal
through-thickness penetrations. On the other hand.
demands that a faugue life methodology should be acaiiabie
to deal with composite structures that are subjected 1o out-
ot-plane load components. Nawrally, the capabiiim ot
predicting the faugue hfe 13 an esscnual element ot the process
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ot cerufying aerospace composite hardware We shail returs
to this subject in the next secuion.

Review of damage mechanics

Whereas the inherent anisotropy of compasites reintorced o
conunuous fibres can provide in exceptionai pertormance
the direcuons of the hbres in the wav of unsurpassed soes
strength and suffness, thev aiso pose a chailenge tar the
seructural designer who has to aliow tor deficiencies in the
transverse and matnx-dom:nated direcuons. The wuruaton o
most acute for PMCs where the ranos of elastsc strenpen and
fracrure toughness, thermal and electrical properties are muost
extreme. Consequently, the damage accumulation character
istics are very different trom the near-isotropic met
matertals because of the muinpliairy of potenual tailure modes,
Deiamination, for example, is one faiiure mechanism that
of particular concern in laminated PMCs and the fugh ratec
of propagauon charactenstc ot this failure mode can orren
have catastrophic consequences. In a tvpical graphire or
carbon epoxy composite even the transverse (1n-plane: tensie
strength amounts 10 no more than a few percent ot e
longirudinal (fibre direction} tensile strength; the out-ot-piane
tensile strength across a typical muludirectional laminate s
generally significantly lower.’ In most advanced composites
the earlv damage process compnses of an increase in the ¢rack
density rather than the crack growth, for example, transverse
cracking of individual plies within 2 muludirectional laminate.
often referred to as first-ply failure. Following initial transverse
ply cracking, delaminations may evenrually develop and can
be precipitated by the 1ransverse ply cracks. Actually,
transverse cracking may exist in the initial state, the cracks
being caused during processing due to the musmatch

il

Internal doubier
{ply termination)

(1} Applied loads or postbuckling
22t Txze T:y

{2) Laminate geometry,
e.g., transitions, tapers, etc.

stresses

External doubier
(bonded joints)
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thermomechanical properties berween adiacent phes. It s
fortunate that aithough composites can be considered ro orten
be 2 highiy tlawed strucrure, thev are aiso 1 highly redundant
structure when in the form of fibre-dominated famenates of
the [C° =45°/9C°] family with at least 12% ot the nbres in
each of the rexeremed directons.

Very few systemauc attempts have been made to apply
damage mechanics 10 advanced composites, for example,
Poursamp Ashby and Beaumont.* In Ref. 4 2 faugue damag,e
mechanics approach is developed for composites based on the
assumpnon ot a relationship between tangw’ damage and
changes in moduli of the composite laminate. The damage
growth rate is assumed to depend on the cyclic stress amplitude
*‘Ag’ and on the current damage state ‘D', hence:

dD/dN = ftAc, D) {1)
In more recent work, the same authors include the load ratio
R’':* Then

dD/dN = f(Ao, R, D) (2)

For both situations the rclatlonshxp between the fanguc
damage state ‘D" and the change of stiffness is utilised in the

form:

E=E,g(D) (3)
which permits
D =g NE/E,) (4)

Integration of Equations (1) and (2) provides an estimate of
life ‘Ny" once the damage accumulatien funcuon f(Ae, R, D)
has been determined. This function can be most directly
obtained experimentally using

b 1dE
gle N(E/Ey)) EcdN

By varying ¢ach of &a, R and D in turn and holding the
other two variables constant, the results may be plowed and
the function f{d0, R, D) determined. Both Refs 4 and 5
include examples demonstrating the application to giass/epoxv
and carbon/epoxv composite laminates and showing an
acceptable correlanon with experiments.

Poursartip and Beaumont® extend the damage mechanics
approach developed in Ref. 5 to predict the fatigue life for
variable-load cycling. Although these predictions are less
satisfactory than for the constant-amplitude cases, they are
shown to be far superior to Miner's rule predictions. It is
noteworthy that in all the work reported in Refs 5 and 6
delaminations originating at the specimen edges, induced by
in-plane tension loading, is the principle damage mechanism,
and the translaminar cracking/debonding etc that occurs
behind the delamination front becomes more extensive afrer
delaminanon. This observation raises the question of the
effects of finite specimen width, which is brieflv anticipazed

fldo, R, D) = (5)

in Ref. 5 as a simple size effect:
dD dD
(Eﬁ)u..w, w, (d]\ ).. —, (6)

where w, and w; represent different widths ot a given laminate
configuration.
This feature is vitally important to the composite hardware
designer and deserves closer attention in future studies.
Turning now to a related and aiso a kev aspect of design,
that is the manner in which a material reacts to the presence
of stress concentrators such as holes or notches, we cite the

cewytdel THhun :)

origins Of 1 research ettort aertng the industy to i
interesung phenomenon. At Generai Dvnamios, duning
the effect of  stress <oncentrativa o boron epux:
graphite epoxv lamunates was ¢xsluated tor botn st
cvehic load condinons. Wasdoups et al” subsequmuv pub-
lished thus work proposing the appiicasion of Malros opic
fracture mecharics 10 advanced composite laminates coraininy
small holes or through-thickness narrow siis. Numerous
Jdapmuons and vaniauons emaraun,, similar conceprs have
appeared since that ume, one notable example being the worn
ot Whitney and Nuismer.® Whilst these approaches have
served the industry well they do not provide a great insight
into the mechanisms of damage; such approaches also impose
a heavy burden on tesung and data coilection.

A quanutative methodology addressing the effect of
notches on composite laminate performance in tension was
developed bv Kortschot and Beaumont® for the [92° %%
laminate family. Selecting a double-edge-notched (DEN,
specimen, a two dimensional finite element 1dc:hsmon o a1
quarter-symmetric region of the specimen (with two coupied
lavers of elements represenung the C° and 9C° lavers: was
used to demonstrate the significance of the longitudinal
splitting failure mechanism within the ¢° lavers. The spli
length and delamination zone were hence predicted and
compared with the experimental results from the x-rav
examination of the damaged region. Later, Spearing, et u/*
extended this work, using a similar approach, to a centre-
notched specimen initallv confining their attention to the
[90.0]s laminate tvpe. Thev similarly found a reasonabie
correlation between theory and experiment, and further
extended the work to 2 limited evaluation of [C°, =45°,92°%
laminates and 1o the tensile fatigue loading case. Predictions
ot the extent of cyclic-load-induced damage and of the
resulting residual strength were also achieved and correlated
with experimental observations reasonably well.

It is of particular interest to recognise that, since all the
work reported in Refs 9 and 10 was confined to monotonic
static tension and fatigue loading, the C° layers will consistently
experience transverse tensile stresses because of a mismatch
in the Poisson ratio between the C° and 9C° lavers as well as
the residual ume-dependent tensile stresses caused bv the
reduction in temperature from the cure state in coniunction
with the large mismatch in coefficient of thermal expansion
(CTE) berween the C° and 9C° orientauon. Consequentiv
focally elevated axial stresses in the vicinity of notches and
holes will promote a splitting of the 0° lavers and chis wil
be exacerbated bv the transverse tension and in-plane shear
created by the discontinuity. Also noteworthv is the fact that
such a reasonable agreement with the experimental data was
arained with a two-dimensional finite-element modelling
technique. One presumes that the three-dimensional stress
state exsung in the vianitv of notches and speaimen
edges results in a condinon wherein the our-ot-plane siress
components have a small eifect relative to the in-plane splituny
mechanism, at least for the laminate configurations studied.

In other research conducted at Cambridge, Souus and
Fleck!! studied compression failure and damage mechanisms
in PMC laminates with and without holes. Thev demonstrated
that microbuckling of fibres in the ¢° lavers was the dominant
fulure mechanism based on both theory and experimental
observations including x-rav evaluations. Using a fracture
oughness modelling techmque. 1 quantitauve and qualitauve
correlation was successfully obtained. Some compression
fangue testing was also conducted and for laminates with
holes and notches indicated the development of a similar nvpe
of spliting and delamination damage mechanism to that tound




.
3
g

439y

By

$ 1Y %Y EY

¢

4 4¥YEEH

-
L iad

i ]

0

At

121

ns
ns

“‘

with the smatc tension and fatigue tesung of notched
laminates.®!% A threshold value of 85% of the notched stanc
compression failure load was tound for compression taugue.
For load levels below this threshold, there appeared to be no
strong fatigue eftects. Here again though. only a hmuted
laminate configurauon was studied. that s | =45°,8%, and &t
is of interest to compare the similarity of the initial loaded
stress state for compression on this laminate with that
experienced by :he [9C°,C°)s laminate under tensile load. Note
that both the residual-stress state and the compression load
will develop transverse tensile stresses in the C° lavers because
of CTE and Poisson rano mismatches, respecuvely, berween
the =45 and C° layers.

Review of certification methodologies

Certification procedures for composite structures generally
include static strength. fatigue/durabiliy and damage roler-
ance, all of which rely on a comprehensive appreciation of
failure modes, the effect of variability, environment and
discontinuities caused by notches, holes with or without
fasteners, and damage induced by impact, machining or
assembly phenomena. The current state of the art lacks a
definitive approach for certifving or qualifying composite
structures and an absence of a consensus by the various
agencies, civilian or military.

A basic element of any certification or qualification
procedure is design development/verification testing which
assesses and validates the design of critical hardware features.
For composite structures this development testing effort is a
particularly crucial part of the certification because of the
sensitivity of laminated composites to out-of-plane loading
and the consequent multiplicity of potential fallure modes.
Recently, the process has been termed the ‘building block
approach’ (Ref. 12) and is initiated during the design and
analysis phase wherein critical areas of the structure are
selected for test verification. The critical features of the
strength are therefore isolated in the form of small test
articles of progressively increasing complexitv. The effect of
environment on these localized regions or ‘*hot spots’ are also
assessed using these economical subscale test articles. The
nature of design development/verification tesang is illustrated
in Fig. 3 for typical aircratt structural hardware. Obviously, the
process of certification poses especially challenging problems in
the case of structural hardware that contain design details that
are susceptible to significant interlaminar or out-of-plane
stresses such as the derails illustrated in Fig. 2. All too
frequently, the effect of such local details are identified very
late in the design cvcle and this experience contributes in
large part to the fading of early optimism for new materials.
Furthermore, the structural analvsis performed has rarely
been made in sufficient detail 1o evaluate adequately the effect
of these interlaminar stresses on potential failure modes and
margins of safery. Being intluenced by marrix properties with
a surong dependence on processing conditions and the
environment, they are also suscepuble to a large stausrical
scatter and to cyclic loading effects. Non-destructive evaluaton
of these regions can also prove difficulc with respect to the
detection and evaluation of dotects.

Three candidate certification approaches are now con-
sidered with a view to defining technological gaps:

1) damage tolerance,
n safe life/reliability,
b)) wearout model.

Damage tolerance methodology

The damage tolerance phiivsophv assumes thar the larges
undetectabie tlaw exists ar the most cnucal locauon 10 the
strucrure and that the structural antegrit v maintained
throughout the tlaw growth unul detected b perudin
irspecuon.

In thus aporoach the damage toierance capabiinv covenna
both the tlaw prowth potenual and the residual strenpen s
verified bv both analvsis and test. Anaivees woula assume
the presence of flas damage placed at the most unfavouratie
location and ornentauon with respect 1o apphed loads and
matenial properties. The assessment ot each component shouid
include areas of high strain. strain concentrations, 3 minimum
margin of satery details, 2 major load path. damage-prone
areas, and speciai inspection areas. The structure seiccted as
critical by this review should be considered for inclusion in
the experimental and test vahidauon ot the damage toierance
substantiation procedures. Those structural areas idenuined as
critical after the analvtical and experimental screening should
form the basis for the subcomponent and full-scale componeat
vaiidation test program. Test data on the coupon, clement.
detail subcomponent, and tull-scale component level, which-
ever is applicable, should be developed or be available to:

1) verify the capability of the analvsis procedure to predict
damage growth/no growth, and restdual strength.

2) determine the effects of environmental factors;

3) determine the effects of repeated loads.

Flaws and damage will be assumed to exist imuially in the
structure as a result of the manufacturing process or to occur
at the most adverse time after entry into service.

A decision to employ proof testing must take the
following factors into consideration.

(A) The loading that is applied must accurately simulate
the peak stresses and stress distributions in the area
being evaluated.

(B)  The effect of the proof loading on other areas of the
structure must be thoroughly evaluated.

(C)  Local effects must be taken into account in determining
the maximum possible initial tlaw/damage size arter
testing and in determuning the subsequent flaw/damage
growth.

The most probable life-limiting failure experienced in com-
posite structure, and particularly in non-planar structures
where interlamuinar stresses are present, is delamination
growth. Potential initiation sites are free edges. bolt holes. and
plv terminations (Fig. 2) in addition to existing manufactuning
detects and subsequent impact damage. Hence, an analvsis
techmique for the evaluation of growth/no growth ot delam-
nations is an essenual tool for the evaluation of the damage
tolerance of composite structures. A numerical method s
available through the use of hnite-element analvsis and the
crack closure integral technique from fracture mechanics.™
Prerequisites for an evaluaton are:

1) a structural analvsis made in sufficient detail 1w indicate
the locations where the cnical tneerlaminar seresses
exist,

hy expenimentally based criucal interlaminar strain energy

release rates Gy, Gy, and a suberitical growth law,
that s da/dN against AG for each mode, and
3) a mixed mode [/mode I fracture critena.

The application of the damage tolerance methodoiogy to
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the F-16 production .eer management program is described
in Ref. 15. The test specimens used to generate the required
mode-I and mode-]I fracture toughness parameters are also
described. The application of this approach requires a
significant analysis and test effort to evaluate ‘hor spots’
within the structure and to generate the necessary fracture
toughness data. The delaminarion growth assessment also
requires a considerable 3D finite-clement modelling and
analysis effort. In addition, no reliable mixed-mode fracture
criteria_has been reported. Hence, this approach is not
considered sufficiently marure 1o warrant a recommendation
for a general application to the centification of developmental
composite hardware.

Safe life/reliability methodology

Statistically based certification methodologies, as exemplified
by Ref. 17, provide 2 means for determining the strength,
life, and reliability of composite structures. Such methods
rely on the correct choice of population models and the
generation of a sufficient behavioural database. Of the available
models, the most commonly accepted for both static and
fatigue testing is the two-parameter Weibull distribution. It
is aceractive for 2 number of reasons:

1) its simple functional form is easily manipulated;
2) censoring and pooling techniques are available;
3) statistical significance tests have been verified.

The cumulative peobability of the survival function is given
by
Py(x) = exp[(—x/B)*s] 7)

where a is the shape parameter and B is the scale parameter.

For composite materials @ and B are tvpically determined
using the maximum-likelihood method. In addirion, the
availability of pooling techaiques is especially useful in
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composite structure test programs where tests conducted in
different environments may be combined. Statistical signifi-
cance tests are used in these cases to check data sets for
similariey.

The following paragraphs present a review of the statistical
certification method of Ref. 17. The development tests
required to generate the behavioural database are outlined,
followed by a discussion of the specific requirements for stauc
strength and fatigue life testing. Special attenton is given to
the effect that matrix and fibre-dominated failure modes have
on test requirements.

A key 1o the successful application of a stausucal
certification methodology is the generation of a sufficiently
complete database. The tests must range from the level of
coupons and elements to full-scale test arucles in 3 'building
block’ approach. Additionally, the test program must examine
the effects of the operating environment (temperature, moist-
ure, erc) on static and faugue behaviour. The coupon and
subelement tests are used to establish the variabilicy of the
material properties. Although they typically focus on the in-
plane behavicur it is also important to include the transverse
properties. This is especially important in the case of research
and development programs. The resulting data can be pooled
as required and estumates of the Weibull parameters made.

Thus, the level and scatter of the possibie fatlure modes
can be established. The wansverse data are characterized bv
the highest degree of scatter. Element and subcomponent tests
can be used to idenufv the structural failure modes. Thev
may also be used to detect the presence of competing farure
modes. Higher level tests, such as tests of components, can
be used to investigare the variability of the structural response
resulting from fabrication techniques. The resulting database
should describe. to the desired level of confidence, the failure
mode, the data scatter, and the response vanabilitv of 2
composite structure. This data aloag with full-scale test arucles
can be used in the argument 1o jusufy ceruificauion.
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Qut-of-plane failure modes can complicate generation of
the database. Well proven and reliable transverse test methods
are few. The typically high data scatter makes higher numbers
of tests desirable. Also, the increased environmental sensitiviey
in the thickness direction can cause failure mode changes.
negating the ability to pool data and possibly resuiting in
competing failure modes. Thus, a design whose strucrural
capability is limited by transverse strength can lead to increased
testing requirements and certification difficulues.

The static, strength of a composite structure is typically
demonstrated by a rest to design the ultimate load (DUL),
which is 1.5 tmes the maximum operating load; that is the
design limit load (DLL). Figure 4 shows the reliabiliry
achieved for a single stauc ultimare test to 150% of the DLL
for values of the static strength shape parameter from ¢ to
25. For fibre-dominated failure with ag values near 20, such
a test would demonstrate an A-basis. However, for marrix-
dominated failure modes, with ranging from five to ten, a
test to 150% of the DLL would not demonstrate the A-basis.
In fact, for values of ag below seven, reliability in the B-basis
could not be demonstrated. Two options are available ro
increase the demonstrated reliability: (1) increase the number
of rest specimens, or (2) increase the load level. The most
effective choice is to increase the load level beyond 150% of
the DLL, whereas increasing the number of test specimens
yields litle benefiz and is expensive.

The two most 2pplicable methods of statistical cerrification
approaches for fatigue are the life factor {(also known as the
scatter factor) and the load enhancement factor. The life factor
approach relies on knowledge of the fatigue life scatcer facror
from the development test program and a full-scale test or
tests. The factor gives the number of lives that must be
demonstrated in tests to yield a given level of reliability at
the end of one life.

A plot of life factor N against the fatigue life shape
parameter o is given in Fig. 5 for a typical scenario. A single
full-scale test 1o demonstrate the reliability of the B basis
{p = 0.90, ¥y = 0.95) at the end of one life is to be conducted.
The curve shows that as the shape parameter approaches 1.0,
the number of lives rapidly becomes excessive. Such is the
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Fig. 5 Piot of the life factor required to demonstrate the
reliability of the B-basis resuits at the end of one life against
the fatigue life shape parameter using a single full-scafe test
article

case of in-plane fatigue failure {ay = 1.25). Although few
data for transverse fatigue arc available, other than perhaps
tor bonded parts, it is reasonable to assume that the value of
the shape parameter will be the same or less. Hence. 11 s
apparent that the life factor approach is not accepuable for
the certification of composites, especially where out-of-plane
failure modes are dominant.

An alternate approsot o life certification is the load
enhancement factor. wirerein the loads are increased dunng
the fatigue test to demonstrate the desired level of reliabiliry.
Figure 6 illustrates the effect of the fatigue life shape paramerer
ay and the residual-strength shape parameter ap on the
ioad enhancement factor F required to demonstrate B-basis
reliabilicy for one life using a single full-scale fatigue test to
one lifetime. It obvious that the required factor does not
change significa .1v for fatigue life shape parameters in the
range of five to ten. However, as the shape parameter
approaches 1.C, as is the case for composites, the required
load enhancement factor increases noticeably, espeaially for
small values of the residual-strength shape paramerter. T
curve illustrates well the potential problems that may arise
trom dominant out-of-plane failure modes. Such failure modes
tend to have low values of o (near 1.0) and also low values
of ax (in the range from 5.0 to 10.C). These values would
make the required load enhancement factors prohibitively
large. It is evident that for failure modes that exhibit 2 high
degree of static and faugue scatter, the life factor and load
enhancement factor approaches can result in impossible test
requirements. A combined approach can be achieved through
the manipulaton of the functional expressions. The resulting
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against the residual strength shape parameter for three values
of fatigue l!ife shape parameter o, using a single fatigue test
10 one lifetime

method allows some latitude in balancing the test duration
and the load enhancement factor to demonstrate a desired
level of reliability.

Figure 7 gives the curves of load enhancement facror
against life factor for the cases of fibre- and matrix-dominated
failure. Typical values for the fatigue life and residual strength
shape parameter were employed. The curves show the possible
combinations of life factor (or test duration) and load
enhancement factor to demonstrate the B-basis refiability ar
the end of one lifeume using a single full-scale fatigue test
article. The curve for fibre-dominated failure modes exhibits
quite reasonable values of life factor and load enhancement
factor. For test durations ranging from one to five lifetimes,
the load enhancement factor ranges from 1.18 down to 1.06.

2.0

Matrix~dominated faiiure ch =1.0, agp =10)

toad enhancement faclor

10 15 20 15 30

Life factor

Fig. 7 Plot of possible combinations of load enhancement
factor and life factor necessary to Jemonstrate the reliability
of the B-basis results at the end of one lifetime using a single
tull-scale test article for matrix- and fibre-dominated failure

modes
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However, the test requirements tor matrix-dominated faiiure
are more severe. Over the range of life factor from one to
five the load enhancement factor ranges from 1.4 down 1o
1.19. An environmental knockdown factor would furtner
compiicate the test of a matrix-dominated failure. Such
factor must be combined with the load enhancement tactor
1o vield the required test load level. As is well known in
composites, the adverse effects of environment on marnx
properties is much more severe than on fibre-dominared
properties and the resulung factor may be significant.

Further :llustration of the problems induced by matrix-
dominated fadure is possible by assuming a limit exists on
the load enhancement factor. Such limits may exist because
of failure mode transitions at higher load levels. For instance.
assuming a load enhancement factor of 1.2 is the maximum
allowable value, it is obvious that a successful one-lifeume
test for a fibre-dominated failure will demonstrate the
reliabilicy berter than a B-basis test. For matnx-dominated
failure, the same reliability would require a test duration of
about 4.5 lives.

Two key aspects to the statistical certification method-
ology are the generation of an adequate database and the
proper execution of a full-scale demonstration test. The
development test program must be conducted in a ‘buildin
block’ approach that produces confident knowledge ot the
material shape parameters, environmental effects, failure
modes and response variability. Perhaps the most important
result should be the ability to predict the failure mode and
know the scatter associated with it. Structures that exhibre
transverse falures, which can result in competing modes and
a high degree of scamer, may render the application of
this fatigue methodology impractical. This result has been
illustrated by the effect of shape parameters on both the static
and fatigue test requirements. The requirements clearly show
that 1 well designed structure thar exhibits fibre-dominated
failure modes will be more easily certified than one constrained
by matrix-dominated effects.

Wearout methodology

The wearout methodology was developed in the early 197Cs
and is comprehensively summarized in Ref. 19 by Halpin,
Jerina and Johnson. This methodology was previously used
in the certification of the following composite aircraft
components:

1) the A-7 outer wing,
2) the F-16 empennage,
3) the B-1A horizontal tail.

In essence, the wearout approach recognizes the prob-
ability of progressive structural deterioration of a composite
structure. The approach utilizes the development test data on
the static strength and the residual strength, after a specified
period of use, in conjunction with proof testing of all tlight
hardware items to characterize this deterioration and protect
the structure against premature failures. It has become evident
that the residual stiffness is an indicator of the extent of the
strucrural deterioration and can be an important performance
parameter with regard to the natural frequences of osciilation
of the acrodvnamic surfaces. Thus, in some instances, it mav
be prudent to incorporate a residual-stiffness requirement 1n
an adopted methodology to evaluate the tolerance of the
structure to component stiffness degradation.

The difficulties in the implementation of the methodology
include the determination of the cnical load condiuons to be
applied for static and residual strength and suffness testing
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and for the proof load specification, Similar difnculues would
arise in the case of all candidate methodologies considered
here and indeed emphasize the importance of a representative
structural analvsis. However, the advantage of the wearour
approach for advanced composite hardware deveiopment
projects resides in the ability to assign "gates’ for sate flignt
testing as the flight envelope 1s progressively expanded.

Proof test philosophy

The truncation in static and residuai strenpgrh, and lite capaciry,
resulting from proof testing is intended to develop confidence
that the structure is unitkelv to fail within a specified tume
under a specinied usage. Most of the essential features of the
weargut process are illustrated in Fig. 8. Mathemauically, the
structural deterioration can be represented by the equaton
from Ref. 19:

F(z)¥r=1r = FRO ™0 = (r = 1) Ay Frun 72 = 1(0)]
(8

where F(t) is the residual strength after ume ‘¢’, F($) 1s ihe
initial static strength, Fa,, is the maximum fatigue spectrum
stress {failure occurs when F(r) = F_,,) and A 1s 3 constant,
The key wearout parameter 'r’ is defined as the slope of
the da/dN curve or may be derived from the S-N fatigue
curve for the failure mode in question. Based on this model,
the proof load level required to protect the structure for the
desired operating period t,, can be deduced as follows:
Seuting F(0) = Fpp, and using £t} = F(xx), we obtain:

Fig=1 = Rax)io= + Ry, ©)
where
R=(r= 1A, (Fra)¥ {18)

and is termed the ‘damage accumulation rate’ or ‘wearour

rate’.
A minimum of two tests is required to determine the

wearout rate R:

1) a static test to failure,
2) a fatigue test tollowed by a residual strength test o
fatlure.
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Fig. 8 Essential features of the ‘wearout maode!l’ reiating statc
faiture, foad history and fatigue falure

A residual suffness test should also be incorporated in
{2 for the reasons noted earlier.

It is apparent from the above discussion that a refiabie
estimation ot the damage accumuliuon rate R is the kev o
the appropriate application of the wearoutr methoduiogy. Since
R depends on the parameter r, data pertaiming to the detaned
configurations and failure modes of the hardware components
in auestion must be obrained. Now. 1z has beer mentioned
previously that 3 disunct likelihood of matnx-controiled
tallure modes exists 1in complex developmentai composite
hardware and we theretore consider that the faure modes
encountered in bonded joints under tatgue loading shouic
exhibit simular characterisucs to that of the delamination o
advanced composite structures. Understandabiv, then, 3
wearout model database exists and other data are availanie
that mav be recast into wearout mode! parameters. We shail
return to this subject in the experimental survey ‘azaivsss
section.

implementation of the wearout methodoiogy

The appiication of the ‘wearour’ philosophy to developmenta)
composite hardware projects seems to be teasible. The kev
tasks necessary to implement the methodology are depicted
in Fig. 8 and can be summarized as follows.

1) Prescribe a best estimate of the usage spectrum,
including the duraton ‘.. or vanious mulupies
thereof, to represent phases of the flight test program.

2) Based on an adequate structural analysis of the criucal
loading conditions specify a static strength requirement
and conduct a static strength test to failure for the
condition deemed o be most criucal.

3) Incorporating damage tolerance cniteria supported by
non-destructive inspection (NDI), conducr 2 faugue
test based on the usage spectrum.

4} Conduct 1 residual serength, and sutiness. test o
failure of the fatigued component, drawing again on
the static strength requirement defined above.

3) Esumate an ‘damage accumulation’ rate through a
series of tests of criucal subelements (identified by the
structural evaluation) and/or coupons. These tests
should provide esumates of the wearout paramerer ',

6) Conducr a proof test of each flight hardware component
1o a level deduced from items 1 to 5.

Experimental survey/analysis

In our previous discussion on wearout methodology, we
referred to the existence of a wearour model database that
can be extracted from the large bodv of literature on PMCs.
These data appear tn a directly relatable formar'® or can be
recast in & common form from recent sources such as
Poursartin et al** or from contemporary composite fracture
mechanice parameters used to define damage or damace
growt . -ich as delamination.'®'* By observing that the
matrix-dominated faiture mechanisms of delamination and
compression represent phenomena that closely resemble the
fulure mechanisms exhibited by adhesively bonded joints™
! we may draw on an even larger database.

Review of theoretical foundations of wearout
concepts

Betore studving the overall database it 1s first appropriate 10
review the phvsical and theoretical basis for the wearout
concepts. As previously stated the probability of pragressive

int J Fatigue seeee 1332




it

59

76

™

structural deterioration of a composite structure is recognized
and forms the essenual ingredient of the wearout philosophy.

By combining several basic assumptons regarding the
behaviour of a composite structure under load with basic
Weibull staustics the ‘kinetic fracture model’ can be derived.
This model serves to assist us in predicting the ‘fatigue
wearout behaviour’ of composite structures.

The first assumption concerns the growth of an inherent
or real material flaw, da/dt, which is deemed to be
proportional to the strain energy release rate G of the material
svstem raised to some power *, where r is to be determined

experimentally; thus
da/de= G~ (11)

where a is the flaw length.

As the cyclic load, F(t), is applied to the flawed body,
the internally stored strain energy will occasionally exceed
the critical level required to overcome the local resistance of
the material o flaw growth, or damage accumularion, and
flaw growth will occur. Then, according to the basic theory
of Griffith the strain energy release rate for the material is
proporrional to the stored strain energy U and the flaw length

a.
Then, since G = al/ we obtain

da/de=x Ura” (12)

We note that the foregoing applies to the ideal situation of a
cracked solid conuining a crack that extends in a self-similar
manner, typically a mode-I condition. Clearly, the more
complex conditions existing in a highly orthotropic, hetero-
geneous body may give rise to different forms of the
relationship.

However, for our present purpose we shall reuin the
above and also assume that the spectrum load levels and
frequencies are selected based on a given aircraft spectrum
loading. The same random sequence is taken to be applicable
to each specimen.

The only variable regarding the applied load history then,
ts the spectrum intensity parameter, A,, which relates to the
reference aircraft spectrum, Fo¢(t), and the experimentally
applied load history, F(t). Hence

F(&) = A, Fru(2) (13)

where A, is a constant. By substiruting Equation (13) into
Equation (12):

da/dr = A5 Fle(t)a (14)
or
da/dt = A, A} Fry(t)a” (15)

where A, represents 2 constant that accouncs for the constants
of proportionality and the prior history.

Bv integrating Equation (15) from some initial time r;
to some later ume ¢, we can keep track of the flaw length
a(t), where a{ty) = a,. Thus:

- £ [4

j a~"da '-=f A A7 ,',,(r)dz=A,A;f dt
g () to

since F,(t) is assumed to be a stationary random process.
For a stationary random process the amount of crack growth
or damage accumulation is not a function of the details of
the load history. Damage accumulation is merely proportional
to the exposure time Ar. Thus, F{t) can be treated as a
constant for the purposes of integration and can be absorbed
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into A,. The spectrum intensity paramezer, 4,, must and does
appear explicily, however, to account for vanauons in
spectrum intensity.

Compleung the integration:

- ¢
al~"
o= AVATL
1 - r‘n‘* i~
Theretore
a(r)” T —altey)” TV = = = A A (16

Finallv, assuming that linear fracture mechanics theorv appiies
10 COMpOsite structures we write

K= a, \;d
and
a=(K¥w)o? (17

Substituting Equation (17) into Equation (16):

~t

GV =g = = (1= 1) AT ALt - 1) (18)

e}

Note here that the constants K and 7 have been absorbed
into the constant A.. Equation (18) describes mathematically
the strength of the ith specimen, ,(t), as a function of time
and its initial strength at time 15, o, The right-hand side of
Equation (18) represents the wearout or strength degradation
that occurs during the time interval ¢ — ¢. The flaw growth
exponent r and the history constant A, must all be determined
from the experimental data.

To descibe how the distribution of strengths for a
number of tests changes with time we consider a series of
specimens that has the distribution of static strengths o(0) at
ume r = G, see Fig. 9(a). Assuming that each specimen is
subjected to a fatigue loading described as A,F,(t) over a
time duration 1 the change in the above distribution mav be
obrained as a function of time. The resulting t;mic-dependent
strength trajectory of specimen i is also illustrated in Fig.
9(a). The equation of the residual-strength wearour trajectory
Oc, — O, is given by the equation:

L
0. ()= (03" - (r= DATAG - )70 (19)

v

Note that whilst the strength trajectories of each of the
specimens (1 < i = n) are not necessarily parallel, the relauve
position of their static strengths does not change. As a result,
the percentage of specimens with static strengths greater than
that of the ith specimen at ¢ = 0, a3, is the same as the
percentage of specimens with static strengths greater than that
of the ith specimen at ume 1, o, that is the shaded regions
shown in Fig. 9(a) both have the same arca.

If we now consider the prediction of the percentage ot
specimens, at time ¢, which have a static strength greater than
some arbitrary value o', given the distribution of static
steengths at time ¢ = 0 in terms of the Weibull parameters,
a., By, refer 1o Fig. 9(b).

Recall that the percentage of specimens having static
strengths greater than ¢' at ume ¢z, is given by

Pla(Q) > a'] = exp(— &' /B, (2C)
Since the relative position of the specimens in the two
distributions does not change in going from a(C) to aiz), 1t
follows that

Pla(t) > a'] = Pla(C) > o) (21

by rtracing the path of ¢ backwards in time. Then, bv
combining Equations (2C) and (21):
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Fig. 9 Features of residual strength and life comprising the
wearout mode!; {a}, residual strength as a function of fatigue
exposure; (b}, trace of residual strength of specimen o' back
to time t = 0; (c), overail wearout model

Plo(t) > o'] = exp(— 0/B¢)% - (22)

The trajectorv of the specimen having 2 static strength
equal to o at me ¢ = 0 and streugth o' at time 7 can be
expressed as

(1 = g = = (- AT AEt)  (23)
from Equation (18). Rearranging this we obrain that
a:[(ol)2(7—1)+(r_ I)A;A‘ t]l/z("l) (24)

Therefore, by combining Equations (22) and (24) the
percentage of specimens that have a static strength o(r) > ¢!
can be expressed as

Plo(s) > o) =
cxp(-— {(O.l )z(--n +(r—=1) A A, t]l/:('—l))ac (25)

Be

or
Plote)> '] =
_ (o!)zu-l) + ("-l)A:A‘ I)":‘ Hr=—t)
BE"

Plo(t) > o'} represents the probability of survival for
an applied toad of magnitude o' at time 1. Based on Equation
(26) a complete family of trajectories and residual-strength
distribucions can be generated for any time ¢. A series of such

distributions for times ¢t = G, ¢,, r; and ¢, are illustrated n
Fig. 9(c).

exp( (26)

10

To determine the time required at a given specirum
intensity A,, before the probability of survival is reduced tw
some value  we can assume a value for the later and soive
for tg from Equation (26}. Hence,

(@~ = A At [ T
Inp= [ YT |
{_{n P]:w—l\ln: B;;.v—vl - (Ol;t:iv-—l-

=/\Y'I)A;A‘i.{k [
and

Bé:r—n,\_lnp)l.:—l)'o:_(o.'.'):.r'l ’
g = . D
ATALr - 1)
Now the distribution of fatigue failures can be represented
on the same graph as the staric residual strengths, along a
horizontal line drawn ar the maximum load fevel produced
during the fatigue spectrum F,,, (see Fig. %(¢)). As the
residual strength of a specimen falls below the Fo,, level.
failure is likely o occur at any time, so that all trajectories
end at this point.
Application of the wearout model requires a2 minimum
of four sets of statistical data:

(1) data describing the static strength distributions at both
time ¢ = 0 and at some later ume ¢,
(it) two scts of fatigue failure dara,

which would be sufficient to define the constants as, 8., 7
and A, that appear in Equations (26) and (28). The spectrum
intensity parameter, A,, would be held constant for the two
residual-strength tests and one of the fatigue tests. The other
fatigue test would be run at two other intensity levels,
resulting in a o against N plot, from which the exponent
could be calculated. The method of solution for calculating
these various constants is an iterative procedure for which
many standard routines are available to facilitate rapid
data reduction. Such routines are capable of automartically
generating diagrams similar to that illuserated in Fig. 9(c).

Orther relationships have been proposed'® relating the
inidal static strength shape parameter ay and the fatigue life
shape parameter ay. It is of particular interest to observe that
these shape parameters, which can also be applied to the
studyv of creep phenomena, are shown to be a function of the
flaw size exponent alone.

(293

(7‘4-.

g =2r+1
o = a,/2(r-1)

However, the relatioaship that will be of specific interest
to this subject is the experimental survey result from the
postulate’” that 2 material may lose strength at a uniform rate
with respect to a logarithmic (or number of cycles) scale.

Thus, from

tFi=BorNFy =8, (35
where ¥y = = 1/2r defines the slope of the faugue curve.
Review of composites and honded joint data

Various expressions have been proposed for the applicauon
to faugue degradation and damage accumulation predicuons
of composites. In the previous section we reviewed the
wearout approach that is based on the relationship:

da/dt = AG" 31
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Subsequently, assumptions were introduced regarding the
relationship between the sirain energy release rate G and the
tlaw size 4 1n order to derve the basic wearout equarion.

The fracture mechamics approaches thar appear 1o have
been ntroduced ininally o address the structural integrioy
and reliability of adhesiveiv bonded joints are tounded on a
similar relationship:

da/dN = B(AKY = Ag(AGY (32

where AKX and AG are the c3clic range ot stress intensity and
strain energy release rate. respectively.

More recentiv the damage-based fatigue mode! devised
by Poursarup ez 2/** has been applied 1o composite laminates
resulting in the expression:

dD/dN = Ap(Ad)” = Ape(AGY (33)
where D the extent of the accumulared damage is clearly
related to the flaw size {length) represented by Equations
(31) and (32). Ac is the stress range that can be related to

stress intensity and hence strain energy release rate via the
familar equation for brittle fracture:

JEG. _ k.
CENT T = (34)
* \Ta

To assist our efforts to draw on the data from each of the
above approaches we have used 2 common symbol r for the
flaw (or damage) growth rate exponent. Consequently, in
view of the relationship of Equation (34) the expression for
the damage growth rate dD/d.N has been modified in Equation
(33).

The comparisons drawn from a very broad range of
literature are provided in Table 1.

Final remarks

The subject of damage sources and damage accumulation in
composite systems has been discussed herein and various
approaches to the certification of composite structures and

the associated faugue life prediction technigues have been
reviewed.

Although fundamental differences between the struccurai
behaviour of PMCs and CMCs exist the prospects or some
similar approaches to damage state prediction are considered
10 be worthy ot future evaiuzuon. To this end, the damaee
mechanics approaches developed at Cambridge bv Beaumont,
Ashby, and co-workers, appear 10 be potenualle amracuve
approaches for CMC damage accumulation and tatigue hre
prediction.

Rerurning to the subject of PMCs, the zeneral overiap
berween damage mechanics and tfracture mechanics suggests
that interrelationships exist wherein the microdamage assess-
ment of discrete interlaminar defects mught be pertormed.
Indeed such strategies may also be appropriate tor CMCs.
One specific area that is of considerable interest to the design
community is associated with the finite-width effect that was
very briefly addressed by Poursartip er al® A svscemauc
scientific evaluation of this effect is stronglv recommended in
furure considerauions.

A striking similarity berween the flaw or, more precisely,
damage growth rate exponents for matrix-dominated mechan-
isms is evident from the review of experimental survevs and
analyses; see Table 1. In most of the widely ranging damage
phenomena interlaminar separation represented the geaerically
similar fearure for composite delaminations and adhesively
bonded attachments berween composite and/or metallic
adherends. Since, future reductions in composite manufactur-
ing costs will depend on the reliability of cocured subassembl-
ies, the strucrural integrity of this category of inrerfacial
damage mechanism will become a critical issue that is well
worthy of further research. This research area should be
extended to the design features that are commonpiace in
composite hardware such as tapers and transitions**3* and
local curvarures as well as through-thickness penetrauons,
discontinuities and bolted connections.

Finally, there is also merit in re-evaluating the uulity of
the wearout model in light of recent developments and where
the Likelthood of a change of failure mode exists owing to

Tabie 1. Comparison between damage growth rate exponents from various sources and configurations

Damage growth rate

Author, reference Configuration exponent r

Halpin et al® Matrix-dominated failure, =450 boron/epoxy 5.05

Waddoups?® Graphite/epoxy-to-titanium double-lap bonded 4.70
joint

Poursartip et a/*+8 Carbon/epoxy [=45°/90°/0°]s laminates, cyclic 6.3-6.6*
tension

Johnson and Mal|22 Graphite/epoxy bonded lap joints 4.34-4.55

Murri et a/23:24 Glass/epoxy and graphite epoxy tapered 5.0-5.6*
laminates, cyclic tension

Brussat et al? Adhesively bonded joints with metallic 5.03-5.57
adherends

Knauss?’ Adhesively bonded joints with 5.75
metallic/composite adherends

Q'Brien'® Glass/epoxy edge delamination specimen, 6.24*

{ = 45°/0°,"90°]5

*Value determined from S-#N curve, based on Equation {30)
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load cvcling and/or environmental etfects. The damage
mechanics concepts imtroduced by the recent Cambridge
research efforts mav serve o suppiement the wearout philos-
ophv by contributing a quanutative prediction capabiisty for
degradation {or changei of residual strength owing to vvehie

loading
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Shakedown Analysis of Structures
Under Sustained and Cyclic Loads

Thuis paper presenis a straightforward method for the direci deternurauon of the
steady solunions tin shakedown anaivsis. The direct method was first proposed i
Zarka er ai. This paper sumplifies this method by showing that the moditied hardenms
parameter field can be directiv found from the vield condiion and the incremeniai
residual siress. Thus, onlv two elasiic analyses are required 1o obtain 1he shakedows
solutions without the need of performung a full-scale anuivsis. The two-bar siructure

and the tube problem are solved as examples 1o show the feasehility and efficiency

af this approach.

1 Introduction

The response of structures subjected to cyclic loads and
temperatures is often very complicated. The structure may
elastically shake down, or it may incur reversed plasticity or
ratchetting. Several fundamental guestions can be raised: the
existence of a steady state is usually of first concern. We then
need to know when the shakedown will occur and what the
final steady stress-strain state will be. The theoretical inves-
tigation of all the possible responses and the evaluation of the
life of a comparatively compiex structure can be very difficult,
even if the creep effect is neglected in a first step analysis. The
computer, based on the finite element can heip, but the nu-
merical approach often turns out 10 be very expensive and
cannot yield a definite and accurate answer except for a small
number of cycles because of accumulated computational error.
On the other hand, in practice the design is primarily based
on the maximum possible stress and strain autainable under
sustained and periodic loads, and thus a large amount of in-
cremental inelastic calculations approaching the steady state
is often inevitable. Note that Ainsworth {1977) has proposed
a method to determine an upper bound on creep deformation
based on the complete steady state, cyclic stress distributions
of a similar structure that does not creep. Therefore. for prac-
tical purposes and as a way of getting out of the difficulty
involved in detailed shakedown analysis for answering all
shakedown qucztinr,, the transient state of the structure can
be regarded as of less importance, and attention can be focused
on the finai steady solutions.

In 1978, Zarka et al. first proposed a direct method which
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permits a straightforward evaluation of the limit state of the
structure on the basts of the elastic solution and the firsr ovcle
of the elastic-plastic calculation. Zarka's method 1akes ad-
vantage of the fact that, 1n the case of elastic shakedownn, the
plastic strain is constant. Whenever reversed plastucity occurs,
however, the plastic strain varies with time and Zarka'< method
becomes complex. This paper presents a simple method fo:
the direct evaluation of the steady solutions for all shakedown
cases. The two-bar assembly and the tube problem are solved
as examples. The feasibility and the efficiency of the approach
are obvious as compared to the conventional incremental
method.

This paper concerns only kinematic hardening materials,
since for such matenials, a steady state can always be reached

2 Problem Formulation

The total strain ¢ 15 considered 10 be C(m;pmed of three
parts, the elastic strain ¢ . the thermal strain ¢ and the plasnic
srain ¢

r
e=¢ e +¢ th

The elastic strain ¢ relates to the current stress o through an
elastic matriy D

¢ =Do (23

while the plastic strain € s assumed 10 obey the associated
plastic tlow law:
oY &8
aa
where [ is the vield function, and A ts an infinitesimal scalat
factor. The creep strain 1s not considered here. An upper bound
of the creep deformation can be estimated afier the shakedown
solutions are obtained using Ainsworth’s method, for example
Suppose that the matenal considered {ollows the hinematic
hardening rule, The vield condition ts then given by a function
in the {form of




e a)=( i4)
where o s the back stress, abso called the hardenimy parameter.
which incicates the current center of the vield surtace. Some
ditferential refations have beer proposed for the determinution
of the rate @ o the back siress. [n this paper, we will use the
simplest. but ra er extemsnely used vanant

a = Be ]

e posthive matns. We can thus

whore B v g constant s
WrIie

¢ =B o 6

To rormulate a direct approach. Zarka et at. (1978 separated
the stress and sIrgim mio (Wo parts:

g\/ao' -p
! [
( =¢ e

where (07, ¢ ) represents the purely elaste solution to the
current boundarny value problem, and (p. ) represents the
residual stress and strain. The residual stres< should be stau-
callv admussible with zero applied torces, and the residual stram
should be kinematically admissibie with zero applied displace-
ments. Generally, they all vary with ume.

Zarka et al. nextintroduced a modified hardening parameter
o

d=a~p. (8)

This new tensor has no physical meaning, but with it we can
rewrite the vield condition, Eq. (4), as

Ste" -a)=0 9)
and obtain a residual stress-strain relationship
e=(B"'+D)p+B & (10}

Zarka's methad is that, instead of solving a dilficull plas-
ticity problem, he tried to find an & field such that at anyv 1ime
the yield condition is satisfied. Then the residual solution (p,
e) can be obtained by solving an elastic problem with homo-
geneous equilibrium equations and boundary conditions but
with nonhom~eeneous stress-strain relationships. After that,
the actual solution can be found, according 10 Eq. (7). by
superpositions. Thus, the key point of Zarka's method is how
1o find the & field.

In the case of elas:ic shakedown, the & field is constant,
that is, it is independent of time. This fact makes Zarka’s
method rather simple. However, whenever reversed plasticity
occurs. the & field varies with time and Zarka's method ioses
its simplicity. Another difficulty is that many a fields can be
choser that meet the requirement and ther= will be considerable
ditferences in the final shakedown solution, depending on the
chowce of & fields. To single our the correct solution, Zart
et al. calcufated the first cycle and deduced, through a compi-
proredure. the right & field.

We now present a simple and straightforward method to
directly derive the & field and then the shakedown solution.

1t is known that under periodic loading, the stress state will
alwavs shahe down due to the kinema'ic hardening. As aresult,
when shakedown is reached, the structure considered can be
composed of three kinds of regions: S, S., and Si. where §,
is the reversed plasticity Zone, S, vields only in the heating half
cveles. and S, yields only in the cooling half cycles (Fig. 1).
In the stress space, it means that stresses in region S, hit the
vield surface twice in a complete cycle, whereas stresses in
regions S» and S. hit the vield surface only once and remain
somew here wiside the vield surface during the other half cyvcles
(Fig. 2). In other words, the abeve division says that during
a complete cvcle when the shakedown is reached, the yvield
conditton will be met twice 1n region Sy

2

Heator a0 e B P

Fig. 1 Possibie diision of the region. Region S. wncurs allernating
plasticity: region S; yields only duting the hesung. and region S yieids
only during the cocling.

Fig. 2 Yield surface. Stressss in region 5. hit the yielo surface twice
in 2 complete cycle. Stresses in regions S; and S, hit the yield surtace
oniy once and remain somewhere inside the yieid surtace during the
ather hait cycies.

Sigki-éu)=0

{11y
Mot —éc)r=0
and will be met only once in region §::
f(dfq - &H) =0
12
v (12)
f(ﬂ( d 0(‘)<0
and cnce in region S
Sloh— <0
(13

ﬂ_a'(’ - &(‘) =0.

In Egs. (11)-(13), the subscripts 4 and € a-e used to refer to
the values for the heating and cooline half cycles, respectively.

Now suppose that the yield condiuon, Eq. (%), permits the
solution of & in terms of the stress . Then from Eqs. (11)-
(13), &y and &, can both be found 1n S, aycan be found while
&qis unknown in S;; and &c-can be found while &,,15 unknown
in 5. Since one of the modified hardening parametersis alwavs
known, the problem thus becomes that of finding the increment

(14)

Once the increment Aa is found, the @ in 5: and @, in §s,
and consequently the entire a field in the whoic region. are
fully determined.

From Eq. (8), we have an incremental relation-

Ad= Aa - dp (5

Since from Eq. {5) the back stress a depends uniguely on
the plastic strain, whereas the regions S: and S yield only once
in a complete cvcle, the plastic strain and consequently the
back stress should be constant there. In other words, 1n these
two regions, the incremental back stress Aa is zero. and the
incremental modified hardening parameter A& equals the neg-
ative ncremental residual stress Ap:

g.ltr:r)

34 -0

A& = &c - @n.

in S; and S.. ($1.))
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Fig. 3 Two-bar assembly. Two bars are made of the same kinematic
hardening material, but of ditferent tengths (: and w. respectively) and
diflerent cross-section areas (A and A, respeclively). in addition to a
consiant axial force P, bar 2 is subjected to a temperatute change of
amplitude 7, whiie the temperature of bar 2 atways stays st zero.

Hence. we only need to calculate the increment Ap 1o find the
increment Aa and then the & field.

It should be noted that for the reversed plasticity region, §,,
the piastic strain, and hence the back stress, vary with ime so
that the incremental back stress Ao does exisi. However, for
this region. &y and ac are both known and therefore the in-
crement Aa can be found directly.

From Eq. (7)

Ap =40~ Ad”. (17)

Elastic shakedown is characterized by the fact that the incre-
mental stress is elastic. Hence, in such a case, the residual stress
p and, as a result, the modified hardening parameter & are
independent of time and thus can directly be found from the
yield condition. On the other hand, whenever reversed plas-
ticity occurs in any part of the structure, an evaluation of the
incremental residual stress is necessary for the determination
of the modified hardening parameter field.

{n using this approach, the key point is that the vield con-
dition should permit the solution of & in terms of elastic stress
o”. Also, we should know the shakedown mode, and this can
be done by performing some pre-analysis. The solutien pro-
cedure can best be shown by some examples.

3  Examples

Two-Bar Structure. Two-bar and three-bar structures have
becn studied by several authors (Zarka, et al., 1978; Megahed,
1978; Leckie and Ranaweera, 1980; etc.) to illustrate the var-
ious shakedown analysis. To begin, we will also use a two-bar
structure to exemplify the direct method.

The structure considered (Fig. 3) consists of two bars made
of the same kinematic hardening material. but of different
lengths {fand »f, respectively} and different cross-section areas
(v and A, respectively). The upper end of this system is fixed,
and the lower end. where a constant axial force Pis applied,
can move only in one direction. In addition 1o the mechanical
load, bar 2 is subjected to a temperature change of amplitude
7. while the temperature of bar 1 always stays at zero.

It can be found that eight different modes of behavior are
possible for such a two-bar assembly when shakedown is
reached. They are the purely elastic behavior—mode E, the
elastic shakedown—modes E, and E,, the reversed plasticity—
modes P,. P, P:. and Py, and the ratchetting—mode R. The
characteristics of these modes are shown in the following table
and Fig. 4 gives the interaction diagram for a particular set of
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Fig. 4 Interaction diagram. two-bar assembly (k = 10,4 = 0.9. 5 =
1.1). Eight difterent kinds of behavior are possible tor 2 two bar as-
sembly: the purely elastic behavior E. the elastic shakedowns E, and
g,. the reversed plasticity responses P, P,. .. and P, and the ratchetting

Yable 1 The possible responses of the two-bar assembly
T I 1 i
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parameters. Notc that if the transient states are conwidered.
the reversed plasticity regions P- and P, and the ratchetting
regton R can be further diided into several subregions as
shown by the dotted lines 1n Fig. 4. Since this paper concerns
oniy the final shakedown solutions, we will not examine the
transient behavior.

-




Now we will use the direc: method to derive shakedown
selunons. For convenience, the tolfowing normalized stress.
stram. force, and temperacure walt be used 1 the tortheonung:

SEress
{J =
@,
(18}
_E arain
" a
P
)= ——
! Aa,
(1%
| o
H=

e

where £ v Young's modulus. 3 s the coefficient of thermal
ewvpansion, and g, is the ininal vield stress. Thes are all con-
sidered as temperature-independent material properties.

The basic relationships for the two-bar assembly are as tol-
lows.

Equilibrium equation:

0. roy=p. (20
Compatibility condition:
€=y, n
Stress-strain relationship:
=0y +ef
22)
E2=0 -~ ég.
Plastic strain-back stress relationship:
& = ka;,
(23)
ES'—‘ ka:
where k is a material constant.
Yield condition:
loy—a;l =1
(24
los—axl =1,

Now if the stresses and strains are expressed as the sum of
fwo terms &s shown in Eq. (7). the residual stresses and strains
should sausfy the following equations.

Equilibrium equation:

Yo~ p:=0. (25)
Compatibility condition:
€, = ne;. (26)
Stress-strain relationship:
e =(hk+ 1o, + Ay
N
€= (K+ §)ps = ks,
Yield conduion:
lof ~ a1 =1
(28)

|(J';‘i"(‘!3| =].

Ba;»ed on the above governing equations, the purely elastic
solution can be found for the heating hatf cveles as

4

Fig. 5 Ratchetling mode R, two-bar assembly. Bar 1 and bar 2 yield in
tension alternatively and plastic strains build-up. The kinematic hard-
ening finelly stops the ratchetting and the shakedown occurs.

o o+
T
(29
0:,=p —~4nd
Toleym
and for the cooling half cycles as
o= Zp
" (30
¥ = P
T+

and the residual <tresses can be expressed in terms of the mod-
ified hardening parameters as

k(ﬂ(._l: -~ (}])
Dy = e

(k+ D1+ 3y

(3
L Ky(né: - &)
(A+ D+’

Therefore. once the modified hardening parameters are found.
the residual stresses ¢an be determined direct]s and the <hake-
down solution can be obtained by a superposition based on
Eq. (7).

As an example, let us first consider the ratchetiing mode K.
In thic case, bar | vields in tension during the heating and
remains elastic during the cooling, while bar 2 behaves elast-
ically during the heating, but yields, also in tension, during
the cooling (Fig. 5). Since both bars vield in tenston alterna-
tively. the plastic strain will build up and ratchetting occurs.
However, the kinematic hardening will finally stop the ratch-
etung so that the structure will incur large but sull finite de-
formations when the steady state is reached.

According to our general descniption, Fig. 1, there will be
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only 1wo regions Sy and S, in this ratchetting mode. Since 1t
i~ the case of elastic shakedown. the modified hardening pa-
rameter & fields are constant and can be determined trom the
vield conditions. Eq. (285, directls

(KM

Now trom Eg. (31) the residual stresses, which are abvo
constant during the cvcles. can be determined

kinf~ (1 = n)1~+m)
(h+ D1~y

= -

(33)
kyind — {1 —m(1 = ynl}
(h+ 1)1+ yn)
and finallv a superposition gives the shakedown solutions. For
the heating, we have

[ : {(k+1)(1+ym)
R el LR L R )
S E Gk~ D~ ) P

pr=

+{k+ Dyn+ 198+ k(1 = n)(1 +ym}
3 (34)

1
5 = e (K + B
0> (“1)(“7”).!( + IXE+yn)p

- =~ [(k+yyn+ 1yn8— ky(1 =1 +yn)]
and for the cooling,
4 1

o [k + 1)1 +ynmp

Tk D+ )
—knf + k(1 — )1 +ym)]
3 (35)

1
9 I —— k
0 (k+1)(l+~m)-“ + 1)1 +yn)p

. + k8~ ky(1 = 7)) + yn)).

It is seen from the development that, in the case of elastic
shakedown, the steady solution can be found using a very
simple, straightforward approach. The derivation of this steady
solution based on the conventional incremental calculation is
considerably more complex.

We next consider the reversed plasticity mode P,. In this
case, bar 1 incurs reversed plasticity during the cycles, while
bar 2 yields in tension during the cooling and remains elastic
during the heating (Fig. 6). Referring to Fig. I, we now have
two regions S, and S,, and therefore, an incremental solution
is necessary in the present situation.

Using the yield condition, we can only find the modified
hardening parameter for bar | during the heating:

nip+9)
I+yn

while during the cooling, the modified hardening parameters
for both bars are known:

i (36)

&y =

)4

&|= +1

1+yy a7
. __P
oy = - 1.

b+

Thus, we need to find the increment
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Fig. 6 Reversed plasticity mode P, two-bar assembly. Bar 1 incurs
reversed piasticity during the cyciss, while bar 2 yieids in tension during
the cooling and remains elsstic during the hesting.

Adr= - Ap; (38)
for bar 2.
The incremental residual stresses should sausfy the equilib-

rium equation

YAp, + Ap>=0 (39)
and the compatibility condition
Ae, = ndes (40
where, by Eqs. (27) and (36)-(18),
]
e, = (k + Dap, wl.-( LA 2)
I+ 1)
Aey = Ap;.
The solution o Eqs. (39) and (40) is
Knb - 2(} + yn)}
Ap) =
(K4 1+ ym(1 +yp)
(42)
ky[nf = 2(1 + )]
Apy= =

(k+1+yn(l+yp)

Then, the modified hardening parameter for bar 2 during the
heating can be found:




Tk~ i =)
= (1~ ymlA(l = 29) = (1 =i,

A~ Y~ ynip~ kynt

Qs
43
and the residual stresses can be determined from Eq. (31).
Finaihv, a superposition vields the shakedown solution:
For the heating half cvcles,
1
g =
(A= 1k=1=49)1 )

A=tk ~ 1<y

< (1 = 3m)f) = K[k(1 = p« 2ym) = (1 = )T+ ym)}

(44
_ 1
(h+ DA+ 1+)1+yn)

LA+ DA+ 1wymp

= (1= 46l = Ky [k = n + 2ym)+ (1= )1 =]}
and for the cooling half cycles.
1
T +7)

om—
Tk+ D+ ym)

[(A+ Dgp— k(1 + )]

9
d5)
[+ 1)p+ky(1+7)].

The shakedown solutions for all possible modes can be. de-
rived using the direct method. We will not give these solutions
in this paper due to the space limitation.

Tube Problem. The tube probiem has received great ai-
tention in the literature. The ratchetting behavior was first
analyvzed for nuclear reactor pressure vessels by Miller (1959)
and later by Edmunds and Beer (1961), Burgreen (1968), and
Bree (1967, 1968).

Bree studied the response of a cylindrical tube subjected to
a sustained internal pressure and a cyclic temperature drop
across its wall. Using a very simple one-dimensional model,
a.suming a linear temperature distribution across the tube wall
and considering primarily an elastic-perfectly piastic material
behavior, he studied various responses of the tube. Later,
Mulcahy (1976) analyzed the same problem uvsing a linear kin-
emaltic hardening model. Megahed {1978) adopted a bilinear
temperature distribution and considered the effects due to cychic
hardening and creep. Leckie and Ranaweera (1980) reanaiyzed
this problem using a more realistic parabolic temperature dis-
tribution. and a bound on the creep deformation was found.
A of these researches, however, were based on Bree's sim-
phitied m - ‘el. As this model is very simple, it is natural 10
doubt wr her it can model the actual situation and yield
acceptabic results.

Our previous research (Jiang, 1985) discarded all the as-
sumptions and simplifications made by Bree and achieved
closed-form shakedown solutions for ali possible responses
using the conventional incremental method. While the incre-
mental method worked, the derivation turned out to be com-
plex and time consuming. Now we will use the direct method
to reanalvze this problem to iltusirate the simplicity and ef-
ficiency of the approach suggested.

For convenience, some of the basic relationships are cited
in the following. The details can be found from the previous
research.

Consider a long cylindrical tube that is subjected 10 an in.
ternal pressure p, an exiernal pressure g, a centrifugal force
caused by the rotation of an angular velocity «, and an ar-
bitrarily distributed temperature field 7 across the tube wall
(Fig. 7). All the loads and temperature can be either sustained
or cyclic in the analysis.

Due 10 the symmetry, g, and o, are the only stresses, and ¢,

Fig. 7 Loading situation, tube problem. Yhe tube is subjected 1o an
internal pressure p. an external pressure q. 2 centritugal torce caused
by the rotation of an angular velocity «. ang 8 distributed temperaiure
tield T across the tube wall.

and ¢.. are the only strains we must deal with. For simphfication.
the loads, stresses, and strains are normalized as follows:

4 p

< (46}

47)

(48)

where £ is Young's modulus, G is the shear modulus, 8 is the
thermal expansion coefficient, p is the mass density, 7, 1s the
normalized temperature at the inner wall, 7(r) characterizes
the temperature distribution, and 7, is the yield stress in shear.

There is only one equilibriumn equation, namely

3;—-+jr=0 {49)
one compatibilitv condition, namely
%—"r”+—'”‘—:5’=0 (50)
and two boundary conditions
ol,.,=-P
5h
ol p=~ Q

that need to be satisfied. For the kinematic hardening material,
the stress-strain relationships are
1
e=5{(1-2v)o~ 2vrj+6-e,

1
€=z {1 =20+ 201 -] +8se,
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where ¢, 1s the normalized plaste stram:
G

m

(r—-7.) (:3)

in which
7= s1gnin) 154y

indicates the vield direction, and /7 is the hardening constant,
The vield condinon is given by

T—GE T, (535
where
o=t (56)
G

1s the back stress or the hardening parameter.
Now divide the stresses and strains into two parts according
¢ the general procedure:

o=0"+3
(57)
T T
e=¢e'+¢e,
(58)
e.= el +e.

where (¢, 7y and (¢7'. &f) represent the purely elastic sotution,
whereas (6, 7) and .. .. 3,) are the residual stresses and strains.
The residual stresses should satisfy the homogeneous equilib-
rium equation

do 27
a‘; - —"_' =0 (59)
and the residual strains should satisfy the compatibility con-
dition
& B2,
dr r
The residual stress-strain relationships can be found as

1-2v . G+mv_ G

=0. (60)

.= 3 a = 1’—; [o%
61)
. 1= G+m(l-vy_ G .
€u= g+ T+—Q
2 m m
and the yield condition, Eq. (55). becomes
M-G=1, 62)

where, in Eqs. (61) and (62), & is the modified hardening
parameter

(63)

Based on the above basic equations. the purely elastic s0-
lution can be found as

oo ! > __b_: _ 2 _9_:
n—h:—a:{Pa-<l r;> Qb (l r’>}

G=a-T.

f3-20) AV
e —— " - —35 'b
Taiow \! TR T e
Y, i 2 (64)
1"=(PTQ)~mb,+ S (1_2,,),24,(3‘_2,,)(—1—3—
(b'-ayr 8(l-v) r
g
+ Z(a,b)
l-»
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where
Sta.hy =2 ! (l—f \ rrdr by ;
’ BT r/. r ‘ Irdr;
. BTN
hd .7 S e
Ziabh) = ~t=——mee— gy - 2
Py L rdr = trdr
and the general residual solution can be tound s
2G LG .
o= —v—————— \ —dr-C - =
g (j~m(l~—-v)\\' r r
166)

-

.G ..C
- C*m(l—r)(x r

where C; and C. are constants 10 be determined from the
boundary and continuity conditions.

It is seen that if we can find the modified hardening param-
eter a field, the residual stresses can be found by some inte-
grations, and the shakedown solution can be obtained through
a simple superposition.

To illustrate the direct method, we consider a case, which
was classified as ratchetting mode R in our previous research
(Jiang, 1985).

In the case of ratchetting mode R;, the inner tube wall yields
and the outer tube wall remains in elasticity during the odd
half cycles, while both walls vield during the even half cvcles.
As a result, there exists a reversed plasticity zone near the inner
tube surface, and a ratchetting zone in some middle part of
the tube wall (Fig. 8{a}). During the cycles. the ratcheting
zone wil] gradually shrink and finally tend 10 zero when shake-
down is attained, because of the kinematic hardening. Fig.
8(b) shows the shakedown pattern of this mode, where three
different kinds of regions exist: the reversed plasticity zone S,
(@ = r < ¢), and the elastic shakedown 2ones S; (¢ < r <
dyand S (d s r = b).

As previously mentioned, due to the occurrence of the re-
versed plasticity, the increment Aa should be found in order
to determine the & field.

Since the stresses in region §, hit the yield surface iwice
during the cvcles, the modified hardening parameter & can be
found from the yield condition, Eq. (62), for both the heating
and cooling, the increment Aa being known there:

A& = AT"+ 2

asr<c¢ (67)

On the other hand, the stresses in regions S, and S, hit the
yield surface only once during the cycles so that we need to
find the increment A& in these two regions to determine the
& field. Due to the fact that the back stress does not vary in
the elastic shakedown zones, Eg. (63) yields

Qb= - AT csr=b (68}
Therefore, the problem becomes that of finding the incre-

mental residual stress A7,

The incremental residual stresses (Ag, A7) and the incre-
mental residual strains (Ae,, A&) should satisfy the equilibrium
equation, Eq. (59), and the compatibility condition, Eq. (60).
The incremental residual stress-strain refationships can be found
from Eqs. (61). (67), and (68):

1-2»

G+my
Ag ~

Ae, = A?—Q (a7 +2)
m

asrsc (69)

- G
B AF + = (Ar742)
m

G+m(l-»
+

Aép AT
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Fig. 8 Ratchatting mode R,, tube problem. A ratchetting zone sxists
in some middie part of the tube wall. The ratchetiing zone graduaily
shrinks and finally disappears when the shakedown is attained as »
resuilt of the kinernatic hardening.

1-2
AB, = —=

A - vAT
csrsb.  (70)

. 1=2
Aég=

45 +(1 ~ )A7

Based on these equations, the incrementa! residual stress
A7 can be determined. Assuming that the pressures are sus-
tained loads, while the centrifugal force and the temperature
are cyclic, we find

- God P ¢
Ar= T 5 -3 -
TG mI- - PP [2(' a‘+2|na)

5 ay 2
+ﬂ!—2v) (C"‘a‘) _-’i_w 8] (a,c)] cesrsb (71)

8(1 - a 1~

where

3y

cy 20
SHacy==t(1-=}-%
g{a,c) r( a_) ﬂzi trdr. (72)

Then, by the yield condition, Eq. (62), the elastic solution,
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Lyq. (64), and Eqgs. (683 and (71}, the modified hardening pa-
rameter can be obtained as tollows. For the heaung haly oy e

-~

Ok’ ! . gk
L - {)vu - - (=200 ~ (3= 295 |
(b ~ayr Bl -4 ro
.
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.
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For the cooling half cveles:

CAP-Oyrh*

(h: a:"; as=r=c¢
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= e Do 1 =20y » (3 = 2py——
(b —a)r su—v)[( et
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!
2 S,;(a.c’)} c<red
o

1

(P-Q\zt’
(r-a)r

—1 d<r<b.

Now the residual stresses can be found from the general
solutiori, Eq. (66), and a superposition with the purely elastic
solution finally vields the s akedown solution: For the heating
half cvcles,

'l -
a

1 r R
:-P ——r—— e S - =<
o P o e (1)

¢£ (a:—f':)[46+m(3—2y)

d* ;
- m(l - 2»)—.-,} ~mt,S’ (a.d)?
ar )
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B 1 R ma-2ns (. a*
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+mt,,Z'(a.d)] esr<d
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S =20
8(1-»)
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For the cooling half cycles,
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where
=b‘3’b' {[G+m(l—v)](P Q)—"can

G- (c-d° Q,L -

- 8(1 - ) ( ¢ )+]—ySd(C'd)} (80)
and

d’ 5 ¢ d* 2 4
ST(C d) = (Id-d—g ‘ trdr) —-r-:-<l,,-9-§ 5’ trdr)

e

. (81)
d* d
ZT(c,d) = -1+—’—: (14—‘—% S ndr),

It is seen that due to the different responses in different
regions, the shakedown solution consists of several local so-
lutions. The prablem remaining is how to find the boundaries
¢ and d of the different regions. Figure 8(b) shows that the
point ¢ is the boundary where the response of the tube changes
from reversed plasticity to elastic shakedown, so that the in-
cremental normalized shear stress at this point equals just ~ 2.

Journa!l of Applied Mechanics

On the other hand, pomnt d borders two elastic shakedown
zones, one yielding during the heaung and the other vielding
during the ¢cooling, so that the shear stress remains constam
at this point. As a result, two conditions are available for the
determination of these two boundaries.

Arl, . o= =2
(82)
Az, =0
or.,
/“—21')(- at I 7
2 o) - d)y =0
81-m \ (‘) - < ¢
4G a
- 1
Gomion (83)
f d
- : 3= 2p)+ (] = 2pjme
Ao - 3-2+( Qs
__Gu-2» i1 da
G+m(l—u)( ac
Yo ) §T(bd) ~ ————— [GS}ic.d)
1= (777 Gaml—py T
+m(l - ,-)sgm,dnz =
where

-

d 2 ¢
Zf(c,d)=—1(+td:5—; i trdr (84)

The shakedown solution, Eqgs. (75)-(79), is identical to the
one we derived using the traditional incremental method. and
agrees very well with the experiment performed by Corum
et al. (Jiang, 1985), which justifies the direct method we
developed.

4 Conclusions

This paper presents a simple direct method for the straight-
forward determination of the shakedown solutions of sirug.
tures subjected to various sustained and cyclic loadings. The
advantage of the direct method is that the well-established
theory of elasticity can be used to solve difficult plasticity
probiems which traditionally have to be attacked using com-
plex, step-by-step, and time-consuming incremental analysis.
The direct method was first proposed by Zarka, et al. The
most important point in their framework is the introduction
and the use of the modified hardening parameter field. How-
ever, the determination of this field turned out to be very
complex in their original work. This paper greatly simplifies
Zarka's method by showing that the modified hardening pa-
rameter field can be directly found from the vield condition
and the incremental residual stress. Thus, only two elastic
analyses are required in the determination of shakedown so-
lutions without the need of performing a fuli-scale elastic-
plastic analysis.

It can be seen that Zarka’s formulation, for example, a
residual stress-strain relationship like Eq. (10), requires a unique
mapping between plastic stress and back stress. Thus, Zarka's
approach is limited to linear kinematic hardening. On the other
hand, for high-temperature problems and nonisothermal prob-
lems, the back stress evolution is actually temperature and rate
dependent, and an accurate representation of cyclic plasticity
requires, in general, a nonlinear kinematic hardening rule.
However, the elastic-plastic response of the structure under

8




sustained and cyclic toadings is usually very complicated, and
consequently, any complex constgutive laws would make the
problem intractable. Since the purpose of this rescarch s 10
find directly the steady-state solutions to avoid the time-con-
suming and expensive transient-state calculations, the linear
Kinematic hardening rule becomes an ideal one that can be
dealt with and render at the same ume satsfactory results, The
technmique developed in this paper obviousiy 16 a very usetul
one under such idealization.

The kev point of the present method is that the yvield con-
dition should permit the solving of the modified hardening
parameter in terms of the purely elastic stresses. A question
may be raised as o the conditions which would make this
requirement possible. We have succeeded in solving several
interesting problems using the direct method. Such general
conditions, however, are still under investigation. We hope we
cait address thic rrablem jn the near future.

Several examples have been given in this paper to illustrate
the feasibility and the efficiency of the approach. It is believed
that this version of the direct method is very promising.
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Abstract

The general form of the constitutive equations that describe transient and steady-
state creep of fiber reinforced metal matrix composites is developed. The physical
meaning of the constitutive functions involved is discussed in detail. A method for
the numerical integration of the constutive equations is developed. The ‘linearization
moduli’ associated with the integration algorithm are computed, and the constitutive
model is implemented in a general purpose finite element program. A constitutive
model for steady-state creep of fiber reinforced that has been developed recently by De
Botton and Ponte Castafieda (1992) is also considered. A number of ‘unit cell’ problems
with periodic boundary conditions, consistent with the requirements of homogenization
theory, are solved using the finite element method, and the results are compared with
the predictions of the analytical model of De Botton and Ponte Castafieds.




1 Introduction

Fiber reinforced metal matrix composites are being considered for use in gas turbine engines
because of their creep resistance at high temperatures. In view of their high strength and
stiffness to weight ratio. they are also considered in automotive industry for replacing steel
and aluminum components.

An attempt to derive three-dimensional constitutive equations for creeping transversely
isotropic metallic materials was first made by Johnson (1977). who proposed a constitutive
equaticn for modellirz steady-state creep in directionally-solidified eutectic alloys. More re-
cently, Jansson (1991, 1992) used homogenization techniques to study the effective mechan-
ical properties and the local stress concentrations for composites with periodic microstruc-
tures and nonlinear constituents. De Botton and Ponte Castafieda (1992) have developed
estimates as well as rigorous bounds for the dissipation functions of multiple-phase fiber
composites, in which the constituent phases are non-linear isotropic materials. A review
of the existing models for the effect of fibers on the creep characteristics of unidirectional
composites has been presented by McMeeking (1992). However, there have been only few ex-
perimental studies on fiber-reinforced composite systems having practical utility at elevated
temperatures (Weber et al., 1992a, b).

In this paper, we develop the general form of the constitutive equations that describe
transient and steady-state creep of fiber-reinforced metal-matrix composites. The physical
meaning of the constitutive functions involved is discussed in detcil. A method for the
numerical integration of the constutive equations is developed. The ‘linearization moduli’
associated vrith the integration algorithm are computed, and the constitutive model is imple-
mented in a general purpose finite element program. A constitutive model for steady-state
creep of fiber reinforced that has been developed recently by De Botton and Ponte Castafieda
(1992) is also considered. A number of ‘unit cell’ problems with periodic boundary condi-
tions, consistent with the requirements of homogenization theory, are solved using the finite
element method, and the results are compared with the predictions of the nalytical model
of De Botton and Ponte Castafieda.

Standard notation is used throughout. Boldface symbols denote tensors the order of
which are indicated by the context. All tensor components are written with respect to a fixed
Cartesian coordinate system, and the summation convention is used for repeated indices,
unless otherwise indicated. The prefices tr and det indicate the trace and the determinant
respectively, a superscript T the transpose of a second order tensor, a superposed dot the
material time derivative, and the subscripts s and a the symmetric and anti-symmetric
parts of a second order tensor. Let a and b be vectors, A and B second order tensors,
and C and D fourth order tensors; the following products are used in the text (ab);; = a:b;,
(A'a)i = A‘-jaj, (a~A),~ = ajAﬂ, (AB),J = A(kBkj, (AB)ijkl = AijBkl- (C . A),’j = CijklAkl‘.
and (C : D):jkl = Cijmannkl-




2 Creep constitutive equations for fiber-reinforced com-
posites

We consider a material reinforced by aligned fibers. The unit vector in the direction of the
fibers is denoted by n and is used to define the axis of transverse isotropy.
The infinitesimal strain tensor € is written as the sum of the elastic and the creep strains.
le.
€e=¢€¢ +¢€". (1)

The elastic strain is written in terms of the stress tensor o as

e=C'l.¢o (2)

where C is the fourth-order elasticity tensor for a linear transversely isotropic material. The
elasticity tensor is of the form (Aravas, 1992)

C=2all+2bJ+2caa+dP +e(la+al), (3)

where I is the second order identity tensor, J is the fourth-order identity tensor with cartesian
components Jijx = (60t + 6ubdjk)/2, a is the orientation tensor a = nn,

1
Piju = '2'(aik Ot + @it 6jk + b aji + i aji), (4)

and the constants (a, b, ¢, d, ) are refated to the standard elastic moduli (£, 12, o3, K23, 112).
as defined for example in Christensen’s {1979) book, by

1

1 1 . -
2511 + SHa 22 + 5(1 ~ 202)*Kas,  (5)

1
a= E(Kzs—uzs), b= pas, c=

d = 2(p12 — pa3), e = a3 — (1 — 2v19) Kaa. B)
The constitutive equation for the creep strain rate is of the form

& = f(o,t) (7)

where ¢ is time. Time is explicitely included in the argument of f so that non-steady-state
response can be described. Using the representation theorems for isotropic functions, we
can readily show that the most general form the last equation is (Liu, 1982; Wang, 1970a.b;
Smith. 1971)

€ =a1+2a,0+3a30°+aa+as(0-a+a-0)+agle’-a+a-o%) =f(o,t). (8
where the a;’s are functions of t, and the following five transversely isotropic invariants:
Iy =tr(e), Iy =tr(0?), I = tr(e®), I, = tr(o-a) = n-o-n, Is =tr(e*a)=n-o’n. (9)
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We assume next that tne creep strain rate €7 is derived from a creep potential ¥ = V(o . 1).
ie.

€7 = QE (10}

do ‘

The crecp potential must be a transversely isotropic function. i.e. a function of the form
‘I’:‘ W(Il.lg.];;.].;.ls.t‘). (11)

Using the chain rule, we can readily show that

] 3. ¢ i
é“:g}—:;S—IT?—-CI;:a;I+2aga+3aaaz+a4a+a5(a-a+a-a). (12)
where ou
=2 13
%=, (13)

Note that equation (13) is a special case of the more general form (8) with ag = 0.
If the creep response of the material is incompressible, then the following equation must
be satisfied
3a)+ 2020+ a4 +2050,, =0 (no sum over n} (14)

for all vaiues of o, where 0,,, = n-o -n.
For comparison purposes, we also consider the corresponding creep constitutive equations
of an isotropic material. The most general form of the constiiutive eqaution now is

e =14200 +3c30°? (15)

where the ¢;’s are functions of the isotropic stress invariants I;, I, and J3. The three-
dimensional form of the standard ‘power-law-creep’ constitutive equations is

n—1 ./ : n+l
€T = géo (Z—:) g—; corresponding to v, ) = :?:01 (%) (16}

where o' is the stress deviator, 02 = 1.50;0], = 0.5 (31> — I?) is the von Mises equivalent
stress, n is the creep exponent, and (oo, €p) are material constants. Equation (16a) is a

special case of (15) with

: n-1
c,:«lfﬂ(ff) . a=-3a.  a=0 (17)
2 0o \0p
The matrix material of the fiber-reinforced composite is assumed to obey a power-law
creep equation of the form (16). Therefore, we require that (13) reduce to (16) when a = 0.
ie a3 =0.
Summarizing, we mention that the assumed constitutive equation for the creep strain
rate of the fiber-reinforced material is

€ =a1I+2a0 +asa+as(0c-a+a o) =1(o,i). (18)




3 Identification of material functions «,

Let the coordinate axis xry be along the direction of the fibers. so that n - ey where ey ix
the unit base vector along the ry-axis. Then the constitutive equation (18} can be written

€ = a1y + 20,0, v aybisbntoas oty + bizoyy). (19}
or, equivalently,
€T = a1 +2ax0y;.
€ = a; +2ay02.
(gg = aj+a;+ 2(024’(1&)(733.
T
€0 =~ 2(12 a12.
€5 = (2a2+0as5)023.
.a‘ —_ () Ry
€31 = (2(12 + (15)0'31. (201

The transversely isotropic invariants /; now take the form
2 3 _ _ 2 2 2 911
I =tr(e), L=tr(e®), Iz=tr(e’), li=o033, Is=035 +03+ 03 (21)

An alternative set of invariants that is commnly used is (Green and Adkins. 1960)

Ji=onton, J=o0, Jy=det(a), Ji=(onu-om)+40l,, Js =03 +05,. (22)
Note that, if as = OW/0Is = 0, then the response of the material is identical under
longitudinal (o23,031) or transverse shear (o12). Equations (20) make it clear that a; and as
relate to the response of the composite under shear, whereas a; and a4 refer to longitudinal
and transverse tension.

4 Finite element implementation of the constitutive
model

The constitutive mode! described in section 2 is implemented in a finite element program. In

a finite element environment, the solution of the creep problem is developed incrementally

and the constitutive equations are integrated at the element Gauss points. In a displacement

based finite element formulation the solution is deformation driven. At a material point. the

solution (@n,€,) at time t,, as well as the strain €,4; at time t,4) = ¢, + At are supposed
to be known and one has to determine the solution &, ;.

4.1 Numerical integration of the constitutive equations
We start with the elasticity equation (2)
O =C €, =C: (e +Ae—Ae") =0 - C: Ae”, (23)

-
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where A€ = €,,) ~ €, and Ae™ = €], — €7 are the total- and creep-strain merements. and

o = o, + C: Ac¢ is the (known) elastic predictor.
The creep constitutive equation (1») is integrated using a backward FEuler rechngne ie

Ae” = (o da ) AL P24
Combining the last two equations. we find
Ae™ —flo" — C: Ae  tyy ) At - 0. {25

which is a non-linear equation for Ae™.

The above equation is solved for Ae™ using Newton's method. The first estimate for Me”™
used to start the Newton loop is obtained using a forward Euler scheme. 100 (€7 ey
f(on.tn) At. The Jacobian associated with the aforementioned Newton nicthod is given in
Appendix A. Once Ae“ is found. equation (23) defines the stress a,,, ;. and this compietes
the integration procedure.

4.2 Linearization moduli

In an implicit finite element code. the overall discretized equilibrium equations are written at
the end of the increment, resulting in set of non-linear equations for the nodal unknowns. If
a full Newton scheme is used to solve the global non-linear equations. one needs to calculate
the so-called ‘linearization moduli’ J

0an+l
a€n+l

J =

(26)

For simplicity, we drop the subscript (n + 1), with the understanding that all quantities
are evaluated at the end of the increment, unless otherwise indicated. Starting with the
elasticity equation (23), we find

Jg=c-c. 28 (27)
e

The derivative A€ /Je is evaluated from equation (24) as follows
00e™  0Ae™ Oo of e
9 = B0 ve “Mag (28)

Substituting the last equation into (27) and solving for 7. we find

-1
J = (J+AI.C:?—£) - C. (29
Jo

It can be readily shown that the derivative 8f/do is given by

of

pr 114+2(2b 00 +a,J)+3(3b3 00?4 a3 B) +byaa+t b, (0 at+a-ag)(o-atao)+a;D.

(30)




witere
by = =— (nosumover). By =0uo,4 0uby. and Dyw = away - opay. (31)

Equations (30) and (31} show that 8f,,/80x is symmetric with respect to the pair of indices
(i,7) and (k.1). Therefore. in view of (30) and the usual symmetries of the elasticity tensor
C. one can readily show that the Jacobian Jx is also symmetric with respect to {i.7) and
(k.l). which leads to a symmetric ‘stiffness matrix’ in the finite element computations.

5 An analytical model for creeping fiber-reinforced
materials

De Botton and Perte Castafieda (1992) have presented recently a constitutive model for
non-linear fiber-reinforced composite materials. They developed their model in the context
of infinitesimal non-linear elasticity. but their results - :n be used to describe steady-state
creep as well. For the special case in which both the matrix and the fibers creep according
to a ‘power-law’ relationship of the form of equation (16), their model can be summarized
as follows.

Let the creep potentials for the matrix and the fibers be of the form

¢ ng+1
M (g,) = %‘9—1"— (:—Ok) , k=12, (32)

where k = 1 refers to the matrix and k = 2 to the fibers. For the case where n, > n,. the
creep potential of the composite is estimated to be

¥(1, Iz, 14) = min [0 ¥ (6) + ¢ W2 {0P)] (33)
where
cVa,w,n) = [(l +gw)lei+ 1+ 77)2(73] 1/2,
e e,w,n) = [(l —qw)et+ (1 -an)? 03}”2,
o) = 3@J- 1) = 3(h~3LY,
o) = 3(h=3L). (39

c) and ¢, being the volume fractions of the matrix and the fibers respectively (¢, + ¢z = 1).
Note that ¥ is independent of Is, which implies that the predicted response of the com-
posite will be the same under longitudinal and transverse shear.
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6 Comparison with results of homogenization theory

The predictions of the constitutive model described in the previous section are compared here
with the results of the homogenization theory (Sanchez-Palencia. 19%0). The homogenization
techniques were developed originally in the context of linear elasticity. but thev can be casily
extended to infinitesimal non-linear elasticity (Jansson. 1992).

The comparisons are carried out for noun-linear elastic materials. for which the model of
De Botton and Ponte Castanieda (1992) has been developed.

6.1 Homogenization theory

In the following. we briefly summarize some of the results of homogenization theory as de-
veloped by Sanchez Palencia (1980) (see also Lene and Leguillon. 1982: Lene. 1986: Jansson.
1992).

Consider an inhomogeneous body which is made of two different non-linear elastic con-
stituents. The composite material is assumed to have periodic structure. i.e. its constituents
are arranged in such a way that the composite can be constructed by the periodic repetition
of self-similar elements. We define the ‘unit cell” as the smallest such repeatable element. The
characteristic length [ of the unit cell is assumed to be small compared to any characteristic
dimension L of the body, i.e.

]
6= I << 1. (35)

Let x denote the position vector with respect to a fixed global cartesian coordinate system.
A local variable y is introduced for the unit cell by

y= 3 or x=46y. (36)

Note the a change of O(1) in y corresponds to a O(§) change in x.
The constitutive equation of the material can be now written at any point y within the
unit cell as

o = f(e,y). (37)

Next we search for an asymptotic expansion of the displacement field u as 6 — 0. A
two-scale expansion of the form (Sanchez Palencia, 1980)

u(x,y) = u9(x) + §uV(x.y) + O(6%) (38)

is attempted. The functions ut?), u'® etc., are assumed to be periodic functions. consistent
with the periodicity of the microstructure, i.e.

u®f(x,y + L) = u®(x,y), k=1,2,..., and =123 (39)

where 1, is the charecteristic length-vector of the unit cell in the z-th coordinate direction.
Fuuctions of the type of equation (39) will be referred to in the following as Y-periodic.
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The corresponding strain and stress expansions are of the form

ex.y) = €Yxy)+ 0.

oxy) = o%x.y)+0(8) (40)
where
e(x,y) = E*O(x)+ E""(x,y).
aPx,y) = f(e?y), (41)
with (k) (k) (k) th)
=) _ 1 [ Oy 6uj ylk) 1 { Ov, (921J
e s T YR = o 2 42)
E. 2 ( oz; * Oz, and Y 2\ Oy; Oy (12
The equilibrium equations can be written, to leading order. as
3(7;?)
= 0. 43
0y, 0 (43)

Note that the coordinate x is constant at the unit cell level, where positions are described
in terms of y. The above equations can be used to define a boundary value problem over
the unit cell as follows. Let 0(y), €(y) and &(y) be the displacements, strains, and stresses
of the unit cell. Then, the above equations can be recasted in the following form

a(y) = E9x) -y +ul(x,y),
Cu(y) = € 2 (ayj + 6%) )
aly) = a9 =1f(ey),

0 ji

dy;

where the macroscopic strain field E*®(x) is constant at the unit cell level, and u‘?’ is
Y-periodic.
For any function ¢(x,y), we define

1
<o>= f d(x.y) dVy, (45)

where Y denotes the unit cell, and note that, in view of the Y-periodicity of u'V,
< € >= E*9(x), (46)
Next, we consider the Y-averages if the global strain and stress fields

<e> = E* 4 0),
<o> = <o > +0(5). (47)
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Let < € >© and < o >©@ be the leading terms in the above expansions. We would like to
determine the relationship between < € > and < o > i.e. an equation of the form

<o >9=g(<e>") (48)

in which the desired function g would define the constitutive equation of the composite. to
leading order. We note next that

<o >"=<oW>=<o > (49)
and, in view of equation (46),
<e>V=EW=ce>. (50)
The desired equation (48) can be now written as
<o >=g(<e>). (31
The last equation shows that the unknown function g can be determined from the solution

of the unit cell problem defined by equations (44).

6.2 Numerical solution of the unit cell problem

We consider a composite material made of a non-linear elastic matrix reinforced by continous
aligned fibers, which are also assumed to be non-linear elastic. The constitutive equations
for the matrix and the fibers are of the form

3 Oe )"k“ o’ Ook €or { Te \™* !
e=Se (2N O v® (o z____(_) , k=12, (52
2 €Ok(60k Ook ( e) ne + 1 \ook ( )

The distribution of the fibers is assumed to be periodic, with the fibers arranged in a
hexagonal array as shown in Fig. 1; the dash lines in Fig. 1 indicate the corresponding unit
cell.

The loadings considered coincide with the principal material directions; therefore. in
view of the resulting symmetries. only one quarter of the unit cell needs to be analyzed. Let
the ys-coordinate-axis be aligned with the fibers. The following four types of loading are
considered:

1. Longitudinal tension: ¢33 # 0, all other a;; = 0,
2. Transverse tension: o5; # 0, all other 0,; = 0,
3. Transverse shear: 015 = 09, # 0, all other o,; = 0,

4. Longitudinal shear: o3; = a3 # 0, all other 0;; = 0,
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where all stress components are meant to represent the macroscopic loading < &' >. The
exact form of the boundaryv conditions used in the unit cell formulation are presented in
Appendix B.

The unit cell problem defined by equations (44) ts solved using the ABAQUS general
purpose finite element program (Hibbitt. 1981). The calculations are carried out for ny = 10.
Ny = 3. 0g; = 0 = 0g and €y = €op = €g = 107°. The "deformation plasticity” model in
ABAQUS has an additional ‘linear-elastic” term on the right hand side of equation (52a): the
elastic moduli used in the finite element computations are four orders of magnitude larger
than oy, so that the role of linear elasticity becomes secondary. For the solution of problems
1. 2 and 3 listed above. ‘our-node isoparametric generalized plane strain clements with 2 x 2
Gauss integration and an independent interpolation for the dilatation rate are used in order
to avoid artificial constraints on incompressible modes (Nagtegaal et al., 1974). Problem 4
is solved using three-dimensional eight-node finite elements with 2 x 2 x 2 Gauss integration
and an independent interpolation for the dilatation rate.

The volume fraction of the fibers is 39.5%, i.e. ¢z = 0.395. ¢; = 0.605. Figure 2 shows
the finite element mesh used for problems 1. 2 and 3: the dark and white regions in Fig. 2
represent the fibers and the matrix respectively. The layout shown in Fig. 2 is repeated in
the third direction to produce the layer of three-dimensional elements used for the solution
of problem 4.

Figure 3 shows the calculated longitudianal stress-strain curve. In Figure 3, and in
all subsequent figures, the circles correspond to the prediction of the model of De Botton
and Castafeda, whereas the dash line is the result of the finite element calculations. The
predictions of the analytical model agree well with the finite element solution.

Figure 4 shows the calculated trasnverse stress-strain curve. At a transverse strain €;; =
0.01, there is a 7% difference between the prediction of the analytical model and the finite
element solution.

Figure 5 shows the transverse shear stress-strain response. At a transverse shear strain
€11 = 712/2 = 0.01, there is a 13% difference between the prediction of the analytical model
and the finite element solution.

The finite element solution or problem 4 (longitudinal shear) produces a shear stress-
strain curve identical to that shown in Fig. 5 for the transverse shear. This is consistent with
the structure of the analytical model which also predicts identical response to longitudinal
and transverse shear.

Figures 3-5 show that, at a given strain level. the stress predicted by the analytical model
is always higher than that of the finite element solution. This is consistent with the fact that
the complementary elastic energy function ¥ developed by De Botton and Ponte Castaneda
is an upper bound to the actual complementary energy of the composite. It should be also
noted that the model of De Botton and Ponte Castaneda is developed for a transversely
isotropic composite with a random distribution of fibers, whereas the unit cell calculations
refer to a composite with a certain periodic microstructure (hexagonal array).
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Appendix A
Let F(Ae™) = 0 be the non-linecar equation (23) to be solved for Ae”. ie.
F(AeT) = Ae¢™ — f(a(AeT). 1) At - 0, (33}

where o(Ae™) = ¢ — C : Ae™. The above equation is solved for Ae™ using Newton's
method. The corresponding Jacobian is

OoF of oo of o
W—J“At%BAecr-J+A[—0—EC (‘)‘“

Appendix B

The boundary conditions used in the four unit cell problems listed in section 6.2 are
described in the following. We mention again that the macroscopic strain E* is constant
at the unit cell level. We refer to the coordinate axes (y;,y;) shown in Fig. 2, and let h be
the thickness of the unit cell in the yz-direction.

1. Longitudinal shear.
N = 0: 111 = 0,
Y2 = 0: ‘&2 = 0,
Yz = 0: it3 = 0,

b
p=b0/3: @ =E{"bv/3 and /511 dy, = 0,
D

b/3
y2=b: dp=FEp"'b and / 022dy; =0,
0
. U r. .
ys=h: 143= E§§°’ h and 1 /033 dA =< o33 >, (53)
A

where A is the area of the finite element mesh on the ¥, — y, plane shown in Fig. 2.

The macroscopic strain component E;;O) is applied. and the corresponding < o) >,

0 .
ET® and EX" are determined.
2. Transverse tension

y;:O: 7:&1:0,
y2:0: '&220»
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ys=0:

yll‘b\/'gi

EX” and EL”
3. Transverse shear.
Y1 = 0:
Yo = 0:
Yz = 0:

y,zb\/ff:

iy = 0,

: iy 7
uy = Ej "3

0
dy = E30b and

Uz = E3( h and

up = 0,
u; =0,
1}‘3 = 0;

o = E5V bV3

1
=b: @ =Eb and —-/& dy =< o9 >,
2 1 12 b3 / 21 QY1 21
y3=h: /&33dA=0. (57)
A
4. Longitudinal shear.
n=0: dy=1u3=0,
Y2 = 0: itg = 0,
y3=01 111:'&3:0.
Y= b\/§ iy = 0, I(O)b\/— and b/0'13 dy2 =< 0’(0 >,
y2=b: d;=0,
ya=h: @ =E®h  d=0 and A/oaldA <@ >. (58
15

and

o

Y

e S

and

b

%/é“dy)

¢}

/3

ondy = 0

(}33 dA = 0.

1 b
E/é’mdyg =< 09
0

PN
(nll P

(0)

>,

(56)

, . . . . 0}
The macroscopxc strain component ETY is applied, and the corresponding < ol¥ >

are determined.
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It has been suggested that multilayered sheets, in which alternating layers have different
elastic moduli, might lend themselves to tailoring to reduce, or even eliminate, harmful stress
concentrations at holes or other stress raisers. Such tailoring could be implemented by making the
sheet thickness spatially nonuniform, varying the number of layers, but keeping the layering
pattern unchanged; or, keeping the total thickness unchanged, by varying the pattern of layer
locations and thicknesses; or by a combination of these two approaches. We will call the first
method "thickness tailoring”, and the second "modulus tailoring”. Tailored fabrication of such
nonuniform layered sheets seems particularly well suited to masked deposition techniques.

This note provides a preliminary analytical assessment of the theoretical feasibility of
designing a tailored, layered sheet that would alleviate the stress concentration induced by a circular
hole in a field of balanced biaxial tension (see Fig. 1). If the stress concentration is actually
eliminated, the result is a so-called "neutral” hole. It should be emphasized at the outset that
reducing the average circumferential stress at the boundary of the hole is definitely not necessarily
the desired goal. As we shall see, if modulus tailoring with constant overall thickness is exploited,
and only the relative volumes of the layer constituents are changed, the stresses within the
individual layers can be reduced while the average stress goes up! (This seemingly paradoxical
result takes a little getting used to; the reason it's right is that while the stress in the stiffer material
drops, there is more of it, so the average rises.) Conversely, a misguided reduction of the average
hole-boundary stress by means of modulus tailoring can lead to higher stress concentrations within
the layers.

We consider a two-constituent layered sheet, with Young's moduli Eg (a=1,2) in the
alternating layers, and for simplicity, we assume the same Poisson's ratio v in each layer. The
cffective sheet modulus is E=fiE; + f,E,, where the f's are volume fractions. At each r, denote
the average radial and circumferential stresses by o, and g, and let o™, o{™® (@=1,2) be the

stresses in the layers. The stress-strain relations are

.- of* - vog” _ o, - vop

' E, E(r) 0
O vo!® g4 -vo,

6= =

Eq E(r)
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Fig. 1. (a) Layered sheet. (b) Hole in sheet under balanced biaxial tension.

where E(eo) is the untailored sheet modulus far from the hole. Then

=g, of) = s, ©
and so the layer stresses are proportional to s, and sg. Hence, it is the value of sg at r=a that we
must seek to lower by tailoring E(r), or the sheet thickness h(r), or both. Note that while the stress
concentration factor (SCF) for the average sheet stress Gg is Gg(a)/$S, the layer concentration

Let 2)

factors are
04 (@) _ sela) _ se(a)
o5 (=) sele=) S
For a uniform layered sheet, these layer concentration factors are equal to the classical stress
concentration factor Gg(a)/S=2.

Q)

The equations of equilibrium and compatibility are

dr
dr
respectively. These may be rewritten as
[kps,] =Asg m
[p(sg = vs,)] =s, - vsg (8)

in terms of p =r/a, and the railoring function defined by

22-




E(r) h(r)
A(n) = — 9
E(ee) h{ee)
Primes denote derivatives with respect to p.
We proceed in a semi-inverse fashion by asserting the spatial distribution
s, =S{1-p™") (10)
and solving the compatibility equation (8) for sg to get
I-vin-1) . C
=S 1+ - 11
Sg [ (n—-1- v)pn p(l+v)J (11)
where C is a constant. The only value of C that leads to a bounded tailoring function is
_ a2
C= 2n-n (12)
n-l-v

and this gives the layer stress concentration factor sg/S=n at p=1. The tailoring formula

a/t v n-1
l(r)=cxp[n(2"") X =X dx]

13
n-1-vJ, 1-x" (13

follows from the equilibrium equation (7). In all cases the peak value of A(r), as expected, occurs
at r=a, and is given by
-1

n(2-n) {'x"~x
n-1-vJ, 1-x"

1_v
= cxp[—(l- Vv )j x_logx dx] (n=1+v)
[}

Afa)= cxp[ dx] (n#l1+v)

(14)

I-x
For v=0 this last result equals exp(n2/6).

Fig. 2 shows how the peak tailoring magnitude varies with the layer stress concentration
factor n, for several values of v. We remark that if only thickness tailoring is used, the SCF for
average stress is the same as that for the layers, and so is also reduced below 2. But for pure
modulus tailoring, the SCF for the average stress is given by nA(a), and this always exceeds 2 for
n<2. ‘

To get a neutral hole, we set n=1 in the formula for A(r), and find

s/T v
A peutral (1) = exp[lf 1-x dx} (15)
VJo 1-x
For v=0, this result becomes
alt logx
A neurar (1) = €xp| — . l—xdx (v=0) (16

Fig. 3 shows how Apeyrral varies with r/a for v=0,1/4, and 1/2.
We should check the values of 6{™(r)/6§>(e<) = so(r)/$ away from the hole. In the case

of the neutral hole, we find




/1S=1-{p 1 =p~ Vv (v20)
Sp (P p~*¥)1v ( an

=l~-p“l logp (v=0)
and so the peak layer smess does indeed occur at the hole.
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ABSTRACT

The in-plane shear properties of a range of 2-D ceramic matrix composites have
been measured using the Iosipescu configuration. The non-linear deformation is found
to be associated primarily with matrix cracks. Consequently, the shear modulus
decreases as strain proceeds. The flow strength in shear is found to be compatible with
the stress at which multiple matrix cracking is expected to occur, without interface slip.
Consequently, the shear strength scales with the shear modulus. The shear ductility is
found to diminish as the matrix modulus increases. This effect is attributed to the
influence of matrix modulus on the bending deformation of fibers between matrix
cracks. The experimental observations are used to suggest a mechanism map that
identifies (class IIl) materials which redistribute stress around notches by means of

shear bands.
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1. INTRODUCTION

The in-riane shear properties of 2-D ceramic matrix composites (CMCs) become
important in the vicinity of holes, notches and attachments. In such regicns, substantial
shear stresses exist, even when the applied loading is either tensile or compressive. The
performance of the composite is then influenced by the non-linear shear response of the
material. In some cases, a relatively low shear strength is preferred, because shear
deformation can redistribute stresses and diminish the notch sensitivity of the material
(Fig. 1a).14 In other cases, a low shear strength may encourage shear localization,
leading to inferior structural performance. This latter response is often manifest at pin
loaded holes (Fig. 1b). Consequently, the versatile structural application of CMCs
requires that the shear responses of the material be predictable and adjustable. A
contribution toward this objective is made by measuring the shear properties of a range

of CMCs, and making observations of the mechanisms that cause non-linearity.

2. MATERIALS

A range of 2-D materials having differing matrix, fiber and interface properties has
been selected for this study5 (Table I). Two C/C materials have been chosen, because
they are known to be susceptible to shear deformation and damage in the presence of
holes and notches.3 Two C matrix materials reinforced with Nicalon (SiC) fibers have
also been used, because one exhibits shear damage around notches, whereas the other is
subject to tensile failure without detectable damage.2 The final material consists of a SiC
matrix reinforced with Nicalon fibers.6 A summary of the constituent and interface
properties (Table I) establishes that a wide range of these properties is encompassed by
the choice of materials. All but the latter material have an 8-harness satin weave. The

SiC/SiC material has a plain weave.
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3. TEST PROCEDURES

The shear tests are conducted using the losipescu test specimen’-? (Fig. 2a). The
height of the specimen was chosen to be 25 mm and the V-notch angle was selected to
be 110° in order to provide the most uniform shear zone.9 The specimens were cut from
plates by electro-discharge-machining (EDM). Two strain gauges’ were mounted (one
on each face), oriented 45° with respect to the loading axis, in order to provide a direct
readout of the shear strain.

Tests were carried out using a shear fixture (Fig. 2b) attached to a Servo-Electrical-
Mechanical load frame. The load was applied at a crosshead displacement rate of
~2 um s, In a preliminary study, specimens were monotonically strained beyond the
peak stress, in order to explore overall behavior. Tests were then conducted with periodic
unloading and reloading in order to monitor the influence of the accumulated damage
on the stiffness. Data were collected using a PC-based acquisition program, which also
controlled the test machine. The sampling was recorded as time, load and position
(displacement), as well as strain from each of the specimen faces. All tests were
performed in air and at room temperature.

To reveal the failure mode, one specimen of each material was deformed beyond
the peak stress, immersed in a solution of Znl; and si:bsequently X-rayed.12 The gauge
region was then sectioned, carefully polished through several layers and inspected by

Scanning Electron Microscopy (SEM).

* Micro Measurement type EA-06-031DE-120
Measurements Group Inc., Raleigh, NC 27611.
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4. MEASUREMENTS AND OBSERVATIONS

Typical shear stress/strain curves, T (Y ), for each of the materials and a literature
result for SiC/CAS10 are summarized in Fig. 3. Also shown for comparison (Fig. 4) are
the corresponding tensile stress/strain curves, described elsewhere.23.5 It is evident
that, in all cases, substantially larger strains are possible in shear, compared with tensile
loading. Furthermore, the spectrum of differing shear behaviors encompassed by this
group of CMCs, contrasts with the tensile characteristics. Changes in the unloading
shear modulus G with strain (Fig. 5) indicate that G decreases as non-linearity develops.

The X-ray die penetrant observations made after loading beyond the peak stress
(Fig. 6) establish that the non-linear definition is confined to a band between the notches
and that the damage density within the zone is relatively uniform. Such observations
are compatible with the state of uniform shear expected between the notches in the
Iosipescu geometry.7-9

Observations of damage conducted in the SEM (Fig. 7) establish that matrix cracks
form in all of the plies plus the matrix rich regions. These cracks are always inclined at
about 45° to the loading plane (Fig. 7). The crack density increases with strain and
saturates at strains of order 1%. The crack spacing at saturation is smaller in the plies

than in the matrix-dominated regions of the microstructure.

5. ANALYSIS

The non-linearity in the shear stress/strain curve appears to be dominated by
matrix cracking, as in the case of tensile loading.3.10-14 However, the experimental
results suggest a different influence of matrix cracks on the shear properties than on the
tensile properties. A matrix cracking model that represents the shear stress/strain curve

is expected to have the basic features illustrated in Fig. 8. The cracks are normal to the
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tensile stress. Consequently, the non-linear deformations are constrained to occur along
the tensile axis, normal to the crack plane, unless the plies delaminate. Without
delamination, interface sliding is inhibited. This situation arises because the sliding
displacements in adjacent + 45° and - 45° plies have opposing components parallel to
the cracks. A major contribution to the strain should thus be provided by the increase in
elastic compliance caused by the matrix cracks. An implication is that, by normalizing the
stress with the shear modulus (Table I) convergence of the stress/strain curves should
be achieved. T* ‘= expectation is broadly consistent with the present data (Fig. 9). With
this normaliz.  .n, the C matrix materials have the greatest flow strength and ductility.
Moreover, similar behavior is exhibited by both SiC and C fiber reinforcements with C
matrices. It is also apparent that composites with matrices having larger elastic moduli
(C — CAS - SiC) exhibit reduced flow strength and ductility.

When matrix cracking occurs without fiber failure and with no interface
debonding/sliding, the tensile matrix cracking stress, Om¢, for a material with
homogeneous elastic properties is given by,13

o, = ‘B[(l +v)£2/(1-5)’ ]”(Grm /R)" (1)

where f is the fiber volume fraction, R is the fiber radius, I'p, is the matrix fracture
energy, G is the shear modulus, V is Poisson’s ratio and B = 1.8. A similar result should
ap; .y in shear, when resolved into the orientation indicated on Fig. 8. Consequently,
Eqn. (1) should represent an upper bound on the shear strength associated with multiple
m-. rix cracking. (The ocurrence of fiber failure and interface sliding must result in
dir-inished flow strength) The upp bound values, estimated from Eqgn. (1) using the

p - orties summarized on Tables I and II, are indicated on Fig. 9. It is evident that these
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are of the same order as the experimental measurements and also appear to rank the
materials correctly.

The decrease in ductility in the order, C — CAS — SiC, is considered to reflect the
effects of the matrix on fiber failure in shear. It is evident from Fig. 8 that the fibers
experience bending deflections between the matrix cracks. The bending radius is
expected to become smaller as the matrix modulus increases, because the elastic
deformation of the matrix needed to accommodate this bending must diminish.
Consequently, fiber failures are expected to be more prevalent when the matrix has
higher modulus. Such fiber failures would result in composite failure and limit the
shear ductility of the material.

The relatively low shear strength of the C matrix materials and their high shear
ductility are considered to be responsible for the shear mode of stress redistribution
found in notched materials3> (Fig. 1a). Furthermore, this mechanism is absent in the SiC
and CAS matrix materials,® consistent with their greater resistance to shear deformation
and reduced shear ductility. This contrast in behavior, dependent upon matrix
properties, suggests a mechanism map3.15 (Fig. 10). The ordinate of the map is chosen to
reflect the competition between shear and tensile failure. The latter is governed by the
ultimate tensile strength (UTS), designated S, which has been evaluated in detail 516
The results of this study suggest that a major scaling function for the shear strength is
the shear modulus, G. Consequently, G/S, is used as the ordinate. The corresponding
choice for the abscissa is not crucial at the present level of analysis. Hence, it is chosen
to be the same as that previously used to distinguish other damage mechanisms in
CMCs:5.15.16 notably the ratio of the ‘yield” strength Om¢ to ultimate strength, S.
Superposition of experimental data onto the map (Fig. 10) suggests that materials with
G/S < 80 exhibit a shear mechanism of stress redistribution (class III). Conversely,
materials with G/S S 100 redistribute stresses by mode I matrix cracks combined with

fiber pull-out45.15 (classes I and I0).
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6. CONCLUDING REMARKS

A preliminary attempt has been made to measure and correlate the shear
properties of 2-D ceramic matrix composites. The shear deformation appears to be
dominaied by the incidence and evolution of matrix cracks. A solution for matrix
cracking in tension has been shown to rank the shear flow strength of the materials
tested. However, the approach is simplistic and neglects potentially important effects of
the interface and elastic mismatch between fiber and matrix, as well as residual stress. A
model that incorporates these factors requires development.

The wide range of shear ductility round in this group of CMCs has important
implications for the stress redistribution capacity of the material. It has been noted that
the ductility diminishes as the matrix modulus increases. This trend has been attributed
to the effect of the matrix on the bending deformation experienced by the fibers between
the matrix cracks. A model that relates the bending deformation and stresses to matrix
proper:ies is needed to develop an understanding of this behavior.

Finally, a mechanism map has been proposed that attempts to identify CMCs that
are capable of redistributing stress by shear band formation. The concept used is
elementary. It needs improvements and extensions based on models of shear

deformation and failure caused by matrix cracks.
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TABLE 1

Constituent Properties of CMCs3

Fibers Matrix Fiber | Elastic Moduli (GPa) | Sliding Matrix
Coating Em E/ Gy Stress, T Fracture
(MPa) | Energy, I'p, Jm-2)
Carbon 230 | -5
None 3745 1-5
Carbon 90 + 20
105
Nicalon
SiC 200 | 84
+ 100+ 2 5-10
CAS 100 + 10 1545 15-25
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TABLE 11

Shear Properties of CMCs

MATERIAL SHEAR MODULUS TENSILE STRENGTH, G/S
G (GPa) S (MPa)
c/C 7 320 21
SiC/Cg 19 240 79
SiC/Cc 13 330 38
SiC/SiC 160 175 900
SiC/CAS 50 230 220
KJS 172793 10
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Fig. 9.

Fig. 10.
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The contrasting role of shear deformation on the behavior around holes:
a) open hole, b) pin loaded hole.

a) A schematic of the losipescu test specimen. The dimensions are in mm.
b) A photograph of a specimen within the test fixture.

Shear stress/strain curves measured for each CMC. Also shown is a literature
result for SiC/CAS.10

Tensile stress/strain curves for the same CMCs used to obtain the shear data
(Fig. 3).

Change in unloading shear modulus G as a function of shear strain
superposed above the stress/strain curves.

Die penetrant X-ray image of specimens after testing a) C/C, b) SiC/C.

SEM views of matrix cracks formed after the onset of non-linearity a) global
view of area between the notches in SiC/C, b) detail showing a matrix rich
zone. The contrast is from the Znl; die penetrant.

. Schematic of matrix cracks in two 0/90 contiguous plies, with the loads

indicated.

Shear strength normalized by the shear modulus as a function of shear strain
for each material.

A proposed mechanism range identifying materials that exhibit class III
behavior, wherein shear bands redistribute the stress around notches.
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ABSTRACT

The topic addressed in this paper is transverse cracking in the matrix of the %09 layers of
a cross-ply laminate loaded in tension. Several aspects of the problem are considered, including
conditions for the onset of matrix cracking, the evolution of crack spacing, the compliance of the
cracked laminate, and the overall strain contributed by release of residual stress when matrix
cracking occurs. The heart of the analysis is the plane strain problem for a doubly periodic array
of cracks in the 900 layers. A fairly complete solution to this problem is presented based on
finite element calculations. In addition, a useful, accurate closed form representation is also
included. This solution permits the estimation of compliance change and strain due to release of
residual stress. It can also be used to predict the energy release rate of cracks tunneling through
the matrix. In turn, this energy release rate can be used to predict both the onset of matrix
cracking and the evolution of crack spacing in the 90° layers as a function of applied stress. All
these results are used to construct overall stress-strain behavior of a laminate undergoing matrix

cracking in the presence of initial residual stress.




1. INTRODUCTION

The macroscopic tensile properties of uni-directional fiber-reinforced brittle composites
have been studied extensively since the 70’s, where matrix cracking with intact fibers plays an
important role in longitudinal soength. The transverse and shear strengths of such composites
are invariably lower than the longitudinal strength. Consequently, in applications where
multiaxial stress states are encountered, cross-ply laminates are commonly used. While there has
been considerable attention 1o the elastic properties of cross-ply laminates, relatively less has
been done to establish their fracture performance in terms of the properties of the constituent
phases. This is the topic of the present paper where emphasis is on brittle matrix composites and
explicit results for the effect of matrix cracking on overall stress-strain behavior are developed
and presented. Studies of the topic have been carried out within a framework of damage
mechanics where the effects of cracks are not explicitly predicted as represented by [1, 2]. More
closely related to the present work are studies in [3, 4] where explicit results for the effect of
cracks are given for general laminates. These four papers provide additional references to the
gencrd problem area.

Recently, a comprehensive experimental study was conducted on a laminated 0°/900
ceraraic/matrix composite [S]. When the tensile stress was applied along one of the fiber
directions, cracks were first observed in the 900 layer and always spanned the entire ply, but
arrested at the interfaces between layers, as sketched in Fig. 1. With further increase of the
applied stress, additional matrix cracks developed in the 90° layers in the same way as previous
cracks. These cracks spread as 3D tunneling cracks from small flaws located in the matrix of the
900 layers in the direction transverse to the applied stress, as depicted in Fig. 1. At even higher
applied stress, it was observed that the pre-existing cracks began to extend into the adjacent 0
layers stably and without any fiber failure, until these transverse cracks began overlapping in the

00 layers.




-3

The work in this paper deals with conditions for the onset and subsequent muluplication
of tunnel cracks in the 90° layers of cross-ply laminates. In addition, the effect of the tunnel
cracks on the overall stress-strain relation of the composite will be determined, including the
contribution from the release of residual stress. Such constitutive relations are required if
progress is to be made in the effort to understand the role of micro-cracking in altering stress
concentration at holes and notches in these matenals. The paper is organized as follows. We
begin by posing the problem for the energy release rate of steady-state tunnel cracks. This
problem can be solved using information from a 2D plane strain problem, which also provides
the results needed for the desired constitutive changes. Extensive finite element calculations are
then reported, providing conditions for the onset of tunnel cracking and for subsequent multiple
crack formation. The results permit one to predict the spacing expected between the 900 layer
matrix cracks as a function of the applied stress. Given crack spacing in terms of applied swess,
one can then predict the overall stress-strain behavior. This point is illustrated by giving
examples of stress-strain behavior as a function of the basic geometry of the composite, the
toughness of the matrix, and the residual stress in the next section. An approximate analysis is
carried out in the final section leading to closed form expressions for the overall compliance
change and the tunneling energy release rate as a function of crack density. These results, which

are quite accurate, will be very useful for practical applications.
2. BASIC MECHANICS
2.1. Basic equations for laminates

The elastic properties of an undamaged uni-directional fiber reinforced ply are accurately
taken to be transversely isotropic about the fiber direction. With the fibers aligned with the 1-

axis, the constitutive relation for the undamaged ply is
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where the subscript L stands for longitudinal properties and the subscript T stands for wansverse
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201+ v7) L7 20+ v

To limit the number of material parameters in the subsequent development, the difference
between the fiber and matnix Poisson’s ratios will be neglected (i.e., v = v¢ = V). This
approximation is known to involve little error. The moduli of the ply are related 1o the

constituent properties by

EL =cEf+(-0)Ep, (2)
prd+c)+pm(l—c)
= 3)
=) o)™
and VL =Vr =V “)

where ¢ is fiber volume fraction. Formula (2) is the rule of mixtures for the longitudinal
stiffness, and (3) was given in [6] using the composite cylinders model. The remaining modulus,
ET, has a somewhat greater dependence on the spatial arrangement of the fibers. The
approximation used here is taken from [6]

1+2nc
I-n¢

-
-

Em (5

where N==0— (6)
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The above formulas apply under the condition that no debonding occurs between the fiber and
matrix in the plies. To obtair some insight into the role of fiber/matrix debonding. results will be
computed in addition for the limiting case where it is assumed that the complete debonding has
occurred. To model this, we have followed the suggestion in [S] and have taken Ef=0 1n (6),
thereby reducing the transverse modulus. The effect of debonding on the longitudinal shear
modulus is ignored since this effect is relatively unimportant.

Now consider a cross-ply laminate with equal thicknesses of 09 and 900 plies subject to
in-plane loading only, ac illustrated in Fig. 2. A standard derivation based on the assumption that
the in-plane strains are identical in every ply and that there are an equal number of 0° and 90°

plies, gives the overall relation for the laminate to be

1 VO
€11='E~°11—E‘°22
0 0
VO 1
€99 = —==0y} +-—0 (7)
22 E, 11 Eq 22
I
612=2_u;0l2
where
%(1+%—L—)2—VL2
Eg = T

2
_1_(1 + El—_)(._l_ - Xl_-._.)

2" Er Er E

v 2VL (8)
0 -~
1+El'—
Er
Ho = HL

are Young's modulus, Poisson’s ratio and shear modulus of the laminate, respectively, in the
defined coordinates.

The plane strain Young's modulus defined as
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will appear frequently in the sequel. Since the transverse modulus E1 depends on whether the

fiber/matrix interfaces are bonded or not, Eo also differs for these two cases.
2.2 Concept of steady-state tunneling cracks

Cracking in layered materials often occurs in the tunneling mode within individual
layers, as illustrated in Fig. 1. The energy release rate at the tunnel front can be computed in
principle by a three dimensional analysis. However, as the length of the tunnel becomes long
compared with layer thickness, a steady-state is reached in which the same mode I energy reiease
rate Ggg is attained at every point on the front and is independent of tunnel length [7]. From an
energy argument, the steady-state energy release rate Ggs can be computed using quantities from

the two-dimensional plane strain solution to the crack problem depicted in Fig. 3. The result is

1SRN
Gy = E{ZL‘GO(:&) 8(x)dx} (10)

where 2t is the layer thickness, O is the stress normal to the crack surface prior to cracking, and
3 is the crack opening displacement. This is applicable to linear elastic anisotropic materials and

can be used when residual stress i$ present.
3. FINITE ELEMENT ANALYSIS
3.1. Isolated cracks and the onset of tunnel cracking

A complete analysis of the isolated crack problem depicted in Fig. 3, is performed by
finite element analysis for all practical ranges of fiber volume fraction ¢ and the ratio of Young's
modulus of fiber to matrix, for both bonded and separated fiber/matrix interfaces. The results for
propagation of an isolated tunneling crack will be used to generate the conditions under which

extensive matrix cracking first occurs.
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Figure 3 shows the cross section of a laminate with a single transverse crack spanning the
entire central 90° layer. The stress-strain behavior of each of the plies is taken to be elasucally
orthotropic obeying (1), with due regard for the two orientations. The interfaces between the

layers are assumed to be perfectly bonded. Plane strain conditions are assumed in the z-direction

and v, = v; =0.2. The average tensile stress applied at infinity is ©, and the tensile stress in

. . 2E : :
the 900 layer, prior to cracking, is T 6. Onecan readily show that the normalized
EL + ET
steady-state, tunneling energy release rate, GSS.?O , defincd from (10) is a function only of fiber
ot

volume fraction ¢ and the modulus ratio Ef/Emg, assuming the Poisson’s ratios have bee~
asc.pned, ie.,

SsZ0 - gL ¢ (1)
ot Em

where EO is defined in (9) for the two cases, bonded and unbonded fibers mentioned in
connection with (6). Results displaying the dependence are shown in Fig. 4 for the two cas.s.
These results were computed using a 7-layer laminate model with the crack in the central laver,
but they should apply for an arbitrary large number of layers with high accuracy. In fact, results
computed using a 3-layer model and normalized in exactly the same way differ only very slighdy
from those shown in Fig. 4.

Denote the toughness of the layers in the tunneling cracking mode by I', measured in
units of energy per unit area. For a crack propagating entirely in the matrix, this would be the
mode I toughness of the matrix, I';. For a tunnel crack front encompassing the unbonded
interfaces between the fiber and matrix, I would be some fraction of I'y,. The minimum stess
Oonset Tequired 101 propagation of tunneling cracks in the 900 layers s obtained from (11) as

TE,
Sonset = |—F,
t f(—-,c)
m

This sets ihe condition for the onset of extensive cracking in 90° layers. Note that this first

cracking stress is inversely proportional to the square root of the ply thickness. If an initial
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residual tensile stress, OR, exists in the 90° layers acting parallel 1o the applied suess, then the
sum of OR(E} +ET)/(2ET) and Ognsey should appear on the left hand side of (12). In other words,
residual tension in the layer, modified by the factor (EL+ET)/(2ET), 15 equivalent to an overall

applied stress contribution as far as wnnel cracking is concerned.
3.2. Multiple Cracking

Multiple cracking in 90° layers occurs when the applied stress exceeds the critical level
given by (12). Results will be presented in this subsection for the doubly periodic, plane strain
crack problem depicted in Fig. Sa. Specifically, results will be presented which allow one to0
predict: (1) the evolution of crack density in the 900 layers, (2) the increase in overall
compliance as a function of crack density, and (3) the extra overall strain released by the cracks
in the presence of residual stress. The cracks are taken to be equally spaced within all 90° layers,
with spacing 2L and with the doubly periodic pattern shown in Fig. 5a. Plane strain conditions
are again invoked and no traction is applied in the x-direction. Because of symmetry, only one
quarter of a periodic cell needs to be considered in setting up the finite element model, which is
shown in Fig. 5b. Standard symmetry boundary conditions are applied on all the edges of the
quarter cell in Fig. 5b exc~ >t along the crack face where traction-free conditions are imposed.
The average traction on the vertical faces is required to vanish, consistent with the assumption
that no stress is ap.plied in the x-direction.

The finite element results for Ggs, expressed in non-dimensional form as

GSSEO Ef t
5= = p(——,C, ) (13)
ot & En L

are shown in Figs. 6a and 6b, respectively, for bonded and separated fiber/matrix interfaces. In
Section 4, it will be shown how to use this result for steady-state cracking to predict crack
spacing as a function of applied stress. The corresponding results for the effective plane strain
Young's modulus for the periodically cracked composite, defined as E.=0/¢ where € is the

average strain in the y-direction, are shown in Figs. 7a and 7b as




- =h(z—.c7) (14)

As the crack density 1. becomes larger than about 2, the results have asymptoted to the imut in

which only the 09 layers carry the load, which are simply

It can be shown, by the reciprocal theorem of elastcity, that (13) and (14) are related by

1 t E, 1t
— =1+ — g(—=F ) (16)
h(Ej’_’c‘i) 2L " E, L
En

Residual stresses and strains are generally introduced during the process when the plies
are bonded together to form the layered composite. As discussed earlier, if an iniual, uniform
residual stress OR exists in the 900 layers acting parallel to the applied stress o, the effect on the
tunneling energy release rate is taken into account by replacing © on the left side of (13) by the
sum of OR(EL+ET)/(2ET) and 0. An additional overall strain, €4, occurs due to the release of
residual stress by the formation of the cracks in the 900 layers. By a simple process of

superposition (see Appendix), one can show that

I 1 EL+E - E +Er o0
EA=(——'—='—)"""“~'L TOR =(h 1"1)"‘—‘—1' LR an
E. E, 2Ep 2E; E,

In the limit where the crack spacing becomes small (i.e., L becomes larger than about 2), the
stress in the 00 layers due to the residual stress is reduced to zero. Consequently, in this limit, €4

is just the negative of the initial strain in the 00 layers in the uncracked composite, i.e.,

:._E..L:__El.c_g.z(l—-E-lez)g.B. 18)

E —
AT 2E. E, E, "EL
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4. APPLICATION TO PREDICT CRACK SPACING AND
OVERALL STRESS-STRAIN BEHAVIOR

4.1. Prediction of crack spacing

Results obtained in the last section will be used here to predict the tunneling crack
spacing in 90° layers as a function of applied stress. The method employed here is identical w0
that of Hutchinson and Suo [7] used to predict the crack spacing in thin films under residual
tension. It considers the effect of a sequential cracking process where a new set of cracks tunnels
between an existing set of cracks as the stress is increased, rather than a process where all the

cracks tunnel together.

The calculation of the energy release rate for the cracks tunneling in the sequential process
makes use of the basic solution (13) for simultaneous steady-state cracking. That solution is for
simultaneous tunneling of all the cracks, periodically spaced a distance 2L apart, in the 90°
layers, as in Fig. 5. For any such laminate, the steady-state tunneling energy release rate for each

crack is given by (13),

G EO t
520 _ o 19
""j'—t g(l ) (19)

where here the dependence of g on Ef/Ep and c is left implicit. As noted before, when a residual
stress OR exists in the 900 layers acting parallel to the overall applied stress G, then ¢ in the
above formula should be replaced by g+ (Ep +ET)OR/(RET).

Now consider the sequential cracking situation depicted in Fig. 8, where one set of
cracks spaced a distance 4L apar has already tunneled across all 900 layers, and where a second
set bisecting the first set is in the process of tunneling across the layers. We depicted in Fig. 8
only an isolated 900 layer for better viewing. The steady-state energy release rate for the cracks
in the process of tunneling can be obtained exactly from the strain energy difference far behind

and far ahead of the tunneling fronts as
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GssEO { t
=8520 = 2g(—) ~ gl— (20
Z g(==)-8 X ) )

Under the assumption that new cracks will always be nucleated half-way between cracks
that have already formed and tunneled, and with Ggg identified with the mode 1 toughness T
along fiber direction of 900 layers, (20) predicts the relationship between ¢ and the crack spacing
t/L. This relation is plotted in Fig. 9 for bonded fiber/matrix interfaces. There are two features
worth noting. For spacing larger than L/t of about 2, there is essentially no interaction between
the cracks and the spacing is indeterminate by the present analysis. For smaller spacings the ratio
VL increases approximately linearly with stress ¢, and the dependence on the parameters ¢ and
Ef/Em is largely captured in the non-dimensional stress variable 6/V( Eql'h). Implicit in the
spacing relationship in Fig. 9 is the assumption that initial flaws exist in the 90° layers of
sufficient size and density such that the tunnel cracks will initiate when the steady-state condition
is met. In this sense, the relation between spacing and stress may predict somewhat smaller

spacings at a given stress than actually occurs.
4.2, Prediction of overall stress-strain relation accounting for progressive cracking

Let o be the overall stress applied to the composite and suppose that a residual stress OR
exists in the uncracked 900 layers acting parallel to the applied stress. With ¢ replaced by
o+(EL+ET)OR/(2ET) in the non-dimensional stress variable on the ordinate in Fig. 9, the
appropriate curve in this figure can be used to predict t/L as a function of 6. Next, combine (14)

and (17) to give the overall strain € as

E, +
z:—_!-o-o»e,\:-]—.—_o—+(-l-—l)—’“—£1-g—n 1
E. hEy h 2Er Eg

Here h(E{/En.c,/L) can be obtained from Fig. 7 once one has obtained the relation between t/L

and © as just described.
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The calculations described above are now illustrated. In Fig. 10 plots are displayed of the
normalized overall applied sress against the normalized overall strain for cases in which there is
no residual stress. As noted earlier, the stress remains essentially unchanged until the crack
spacing reaches an L/t of about 2. This corresponds to the flat portion of the stress-strain curves
in Fig. 10. As L/t diminishes to small values (below about 1/2), the 0° layers carry most of the
load, leading to the linear response evident in the figure, with (15) providing the asymptotic
slope of these curves. A remarkable feature of these curves is the fact that the non-dimensional
overall stress and strain variables used in Fig. 10 nearly collapse all the curves for a wide range

of Ef/Em and c.

Fig. 11 shows the effect of a residual stress oR in the 900 layers, a positive value
representing a residual tension and a negative value representing a residual compression. The
critical stress O¢r used to normalize the residual stress in Fig. 11 is the stress at which cracks
begin to tunnel in all the layers in the absence of any residual stress. From (13), this stress is

Eol
Cpp = |l 22
r \/t g(E(/E,.c,0) 22)

This critical stress is between 5 and 10 % higher than the onset stress for tunneling of an isolated
crack given by (12). In Fig. 11, o is the applied stress. Depending on its sign, the residual stress
increases or decreases the applied stress at which matrix cracking occurs and makes a

contribution to the overall strain due to its partial release.
S. AN APPROXIMATE THEORETICAL SOLUTION
5.1. The theoretical development

In this section we shall develop an approximate analytical solution to the doubly periodic
plane strain crack problem posed in Fig. Sb. Except for a modification suggested at the end of

this section, the approximation follows fairly closely a similar solution in [8], where it was
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developed to predict the stress transfer between 00 and 909 plies of a cracked laminate. The
solution in [8] applies to periodic cracks in a single layer sandwiched between 0° layers on both
sides. The following equilibrium equations must be satisfied in both %0° (denoted as material I)

and 00 (denoted as material II) plies.

a&.‘_itl}’. =0 (23)
ox  dy

dtyy 090,

— e = ) (24
ox * dy )

The stress-strain relations for plane strain conditions can be easily derived from (1). They

are, for 900 plies,

du i VL2 V1 VL2
* T 9x (E'r EL) * (ET I‘:L) ! !
2 2
g = v _ T Y, +(L—YL—)oy (26)
dy Etr EL Er EL
1 du v 1
= (=45 = 27
Exy 2(ay ax) 2uT Xy “n
and for 00 plies,
du 1- vt VL(I + VT)
e. =94 - 28
X ox ( ET ) EL Y -
Et. 2
—-—VvL
° v (1+ E
EyE—v=- L(E vr) L+ EL o, (29)
Y L L
=..1..(§.9.+§_Y- =-—-l-—.1 (30)

The boundary conditions for a typical cell of the doubly periodic problem are the standard ones
reflecting symmetry and the relations between the overall quantities and the averages of local

quamifics over the cell boundaries.
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To proceed, we assume that the stress component Oy in both plies is independent of x. In
other words, we look for an approximate solution of the form
o,! =~F(y)+0' (31)

o1 = F(y)+o" (32)

where ol and o1l are the stresses in the 900 and 0° plies, respectively, that would result in a

damage-free laminate subject to average remote tensile stress 6. They are given by

ol = _gEI_ (33)
ET +EL
ol = —2EL ¢ (34)

T Er+EL

We shall omit a detailed derivation for briefness; most of the details are similar to those

given in [8). After satisfying Eqs. (23-25), (27), (28), (30) exactly, Egs. (26) and (29) in an

average sense with respect to the x-direction, and satisfying all the boundary conditions except

those listed below in (36) and (37), we obtain the following linear integral-differential equation
for F(y):

P ()= 20 F (y) + 2,2 Fly) + a0 - [ Fiy)dy =0 39)

where

1501 v? 1-v22Y1 1
azzﬁ{[_E___L_+__T_ 1,1
T EL Er AHr HL

- 1 v2Yv(+vy) R _‘.’14.11-_2. 1-vp?
Er EL\ E Er E. \ Er
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Er 2
]—-—>v
s as|(1 w? 1-vi2Y 1 wv? EF -
af = — b e | —— +
A \ET EL Et Er EL Ep
2 2
_ .\_’_‘_r_+ VLo v (l+vy)
Er Ep EL
2 2
a =£ _‘./_T_+VL _ VL(1+VT)
o= AllEr  EL E_
1 v ? 1-vp2Y 1 v 2 o1-vqg?
Am|—et 42T | 420 (—--Lk)(—1
Er E. Ef Er EL  Er
The remaining boundary conditions to be satisfied are given by
F(0)=0, F(L)=0¢', and F(L)=0 (36)
In addition, it is required that F(y) be an even function in y:
F(y) = F(~y) (37
The solution to (35) can be used to express the integral of F(y) as
L t
J'F(y)dy = 1®(=—)a’ (38)
0 L

where & (which is also a function of ag, a; and a3) will be given below. The Young's modulus of

the cracked composite, E.., is then approximately

= 10 Eo
E. = = (39)
© 'uyr (4 tErg
LEL
and the tunneling energy release rate Ggg, calculated from
Gss =o' [ - V(L)) (40)

is given by the approximation
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ot E

In Egs. (39) and (40), terms such as V(L) stand for the average y-displacement along y=L.

For the case aj/a) is less than 1, @ is given by

2(1-h)mn 2mL 2nl
t m? +n? (co t ~cos t )
D= — 7 ml Zhmn T 2mL 2nL (42)
msin——+nsinh -3 —(cosh - Cos—)
t t m°+n°L t t

where

m = \f(a; +a,)/2
n=./a;-a,|/2

h = —20
ag + 3

2

For cases where ay/a; is equal to or greater than 1, similar solutions can be obtained.
However, for most practical fiber-reinforced composites, ay/a) is either less than 1 or sufficiently

close to 1 such that (42) is a good approximation.
5.2. Modification using the FEM results

The analytical approximation given by Eqs. (39), (41) and (42) can be further enhanced
by a slight modification of @ in (42), which was suggested by the comparison of the approximate
predictions with the more accurate FEM results obtained in Section 3. We found that the
accuracy of the above approximation was improved when we replaced m and n in (42) by 1.1m

and 1.1n, respectively, and then multiplied @ by the numerical factor 0.82. Thus the modified ®

1s given by
0.82 2(1- h)trzln (co 2 2mL - cos 2.2nL)
d)(}_) - m + N 1 t (43)
. 2.2nL 22mL 2hmn 1t 2.2mL 2.2nL
1.1lmsin +1.Insinh = —3—5 —(cosh - cos )
t t m°+n‘lL t t
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Several comparisons of the results given by FEM analysis and the explicit formulas of
Eqgs. (39) and (41) are demonstrated in Figs. 12a. and 12b. The differences for all practical

ranges of Ef/Em and c are within 5%, and thus we believe the formulas given above are well

suited for practical applications.
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APPENDIX

When an initial residual stress R exists in the 90° layers acting parallel to the applied
stress, an additional overall strain €4 occurs due to the release of residual stress by the formation
of the cracks in the 900 layers. This additional strain can be calculated by applying a normal
stress of (-oR) to the crack surface. Fig. Al(a) depicts a quarter of such a periodic cell, with

standard symmetry boundary conditions applied. By a linear superposition argument, one can
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easily verify that the displacement and stress fields of Fig. Al(a) can be obtained by subtracting
that in Fig. Al(c) from Fig. A1(b), where (b) has the same crack configuration as (a), and (c)
depicts the crack-free laminate. The elements in (b) and (c) are both subject to an average stress

(EL+ET)OR/(2ET). The overall strain €p associated with (b) is given by (14)

i EL+ET° _h__1 EL+ET9__B_

= o (Al
*“E. 2Er * 2E; E, )
and the overall strain g¢ in (¢) is given by a uniform plane strain tension
€ = 4 EL*Er OR (A2)
E;, 2E;
The overall strain €4 in (a) is then
- +E
€Ea=Ep—E =(h'=1) EL+ErOp (A3)
2Er E,

which is (16) given in Section 3.
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An isolated crack in a 90 layer.

Fig. 3.

= Bonded fibers
s Separated fibers

The function, f(Ef/Em, ¢), providing the tunneling energy release rate in (i1) for

an isolated crack.

Fig. 4.




The doubly periodic crack pattern analysed in this paper.

Fig. Sa.

Crack surface

A quarter of a periodic cell used for the finite element mode!.

Fig. 5b.
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Fig. 8. A new set of tunneling cracks bisecting an existing set of cracks in a given
layer.
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Plane strain delamination growth in composite
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Composite paneis with straight-through cracks are analyzed with respect 10
energy release rates using an asymptotic method. Various combinations of
geometry and material parameters are considered and predictions are made
about the initiation and stability of crack growth,

1 INTRODUCTION

With the increasing use of composite panels in
design, such problems as inter-layer cracks or
delaminations have received much attention in
recent years. This type of damage may be present
already at fabrication but may also develop for
example if a structure is exposed to impact. Since
the presence of delaminations can severely reduce
the stiffness and strength of a load-carrying
member they are a common cause of failure in
laminates. Perhaps the first investigators to study
the problem of delaminated plates in a systematic
manner were Chai er al.! and after that numerous
articles have been published dealing with delami-
nation problems in flat panels. However, as
pointed out in a survey article by Stordkers’
delamination problems for more complex geo-
metries, such as composite shells or curved
panels, have been treated very sparsely and in the
latter case the analvses have been restricted to
determine the buckling load for compressed
members containing longitudinal delaminations.**

The present study is concerned with a single
delamination growth in a curved composite panel.
Damage of this type has been reported in a recent
experimental study by Lin and Lee® and its prac-
tical significance should be s:bstantial, particu-
larly in aircraft structures. The material properties
for the individual layers are considered to be
linear orthotropic and the calculations are per-
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formed under plane strain conditions, with the
panels loaded in prescribed displacement. Linear
fracture mechanics is relied upon as regards initia-
tion and propagation of crack growth and such
events are assumed to occur at a constant value of
the critical energy release rate. However, such
features as a decomposition of the energy release
rate into tearing and shearing modes, as discussed
by Suo and Hutchinson® and Suo’ could without
any difficulties be incorporated into the analysis.
The more simple criterion involving the total
energy release rate is, however, adopted in the
present case due to its solid physical background.

As mentioned earlier the problem of delamina-
tions in curved panels has been treated very
sparsely in the literature and, to the authors’
knowledge, no attention has been given to. for
example, crack growth stability. The aim of the
present contribution is therefore not only to
examine such features as the effect of geometry
and material parameters on the mechanical
behaviour but also to provide some general
insight as regards crack growth initiation and
propagation in curved panels.

2 BASIC EQUATIONS

The problem concerned involves a composite
panel loaded in prescribed displacement as
depicted in Fig. 1. Plane strain conditions are

Composite Structures 0263-8223/92/505.00 © 1992 Elsevier Science Publishers Ltd. England. Printed in Great Britain
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Fig. 1.

Pancl and delamination geometry.

assumed to prevail which leads to

u=0

3 i1
—=(

ox

1 being the displacement in the x-direction. With
eqns (1) in mind the only remaining strain com-
ponent in the Kirchoff-Love approximation: for
kinematics then reads

1de w2z d'w o)

where v is the displacement in the ¢-direction and
w is the transversal displacement. In the present
analysis the thickness of the panel is considered to
be very small compared to the radius of curvature,
R. and the well known Donnell approximations.
as utilized in eqn (2). are assumed to give suf-
ficient information as regards kinematics.

For a composite panel. with individual layers
assumed to be linear orthotropic with principal
axes of orthotropy coinciding with the coordinate
directions x and ¢. the constitutive equations for
relevant quantities reads

Alde 1 fdw)) B d'w ]
No=2 S e ()] - 2 d
R \dg¢ 2R \d¢ R d¢-

B [dr 1 [dw| D d'w
My==l—+w+—=|—| | - —= —
R \d¢ 2R \d¢ R* d¢” |
(3)
where A, Band D are given by
W2
[A. B, D}zj Q.l1,z.27]dz (4)
-h2

In eqn 4. I is the total panel thickness and
Q.=E, f1=E v, JE + i the reduced
modulus of the pth laver with moduli £ and £
and contraction ratio v, in obvious notation.
The non-lincar equilibrium equatons. with the
contribution from the shearing force 7, retained.
is for the present problem

) 1d7T, N, Ndw)
it ool L O, Qs
R dg¢ R R dg
fii -_r&+.](_j_’.\_i=]1d_“, > 5
R R dg¢ R dg
1 di,

In order to completelv describe the problem
depicted in Fig. 1. presently modelled as com-
posed of three composite panels. it now remains
10 establish boundarv and continuity conditions.
With symmetry prevailing around ¢ =0 this
requires that

=0
o (6)
d¢

and
Tq=0 (7)

at this point.

With a prescribed displacement t, applied to
the free edge of the panel the kinematic conditions
atg=0are

U=1,C0S ¢

. (8}
w=v,sin ¢,
and the dynamic boundary condition is
M, =0 (9

There remains then the need to establish equa-
tions of compatibility and continuity of dvnamic
vanables at the crack front. ¢ =¢.. Figure 2
shows the details of the geometry of the three
panels 1, 2. 3 at the delamination boundary. As
regards kinematics continuity of transverse dis-
placement and slope requires

W, =wu, = ny (1o

dw, _dw, _dw, o

dg dg dg
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By using the relations 3 and - 5 together with
17 the govermng egns 3 .1 and ‘i1 can now be
wntten in dimenstoniess torm as

} d.- - ) d -, ) ) B - ] -
DS gttt g9
dy dg~ dy dy
Nfar 0 (di VL dw (du-“’s
= .1 — e g A e [ —— e Lo —— :
1\d¢ 21&(01« dg ™ 2 \dc') ]
. I8
Fig. 2. Load resulant at the delamination front, iy (12 q_)l
. o . \deJ\dg”
while continuity of in-plane displacements
requires . 1 - .
.o dw o 1dr :
rodw, 1> flf,*v‘[),ld—“;—~fl+H,i(a—{5+?’) 19
I I e (12;
2 i 2R dg¢ , q q q
dw -\ 2.
U “1’:=._.:_1 E‘:_I (13' z{\A‘-f.[}"(g_E_')(d “:)
2R d¢ dg /idg-
Continuity of membrane forces, shearing forces . . .
and bending moments requires _g (9_‘1_4”9)&_ + I {dwifd w]})dw,
N, =N, +N,, (14) ‘\d¢" d¢ R\dg)\d¢ /) d¢”
T,=T,+T, (15) s
oome e , : o p [ER) [0
/W,‘,=M“:+A/IU‘+§(]\'q‘tg—f\o:t;) (16) ) d([‘: d(/‘:
respectively. where
With the formulation of the boundary value ] L
problem completed it is appropriate to introduce A,=A,R-/RD,
dimensionless variables according to B,=B.RJRD, 20
ro=r/n D,=D/RD,
W, = w/h with A,, B and D, defined in eqn (4).
R=R/1, (17) The dimensionless variables may finally be
N introduced into the boundary, compatibility and
T =/t continuity conditions (6)-(16). The resulting
with i=1, 2. 3 for the individual panels. explicit expressions, however, are suppressed for

brevity.

3 SOLUTION PROCEDURE

In order to solve the problem as given in eqns (18, and (19 an asvmptotic method was applied. For this
purpose the kinematical variables r*, and w, were expressed with the aid of series expansion as

2 IRy

- -1 2. T3
PRSI Y S oK O T S IR SUUEE 0 B L S
D e s 21
Wo=sw, +5 RS s
where s can be any monotonically increasing parameter, in this case chosen to be the non-dimensional-
ized loading parameter r',. As regards the displacements ¢ and v in eqn (21). and in the sequel, lower

index i = 1.2, 3 still represents the individual panels while upper index j refers to the order of approxima-
tion.
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By introducing eqn (21} into the non-linear governing equations {181 and ' 191 the solution to the
problem is now given by solving a number of systems of linear equanons reading

f A

RPNy i
d¢” dg¢” dg d¢
A
3o 2 -1
g0 4 A(LL)
\ dg d¢” dg
( K. s 2o -2
LY S LV ST AT
dg d¢- dg d¢
-4 dz"+ di, 1 du‘ g dw, d“;i':. L oy
d¢ dg” dg d¢ /\d¢’
571 ¢ . .
_B+D‘d*‘»:f A, +B) d“z"+dn"j
(B,+D,) - -
g d¢’ " dg
- ! Y AN 2ot KIS
—4 + 5|9 dM , —B,(d l:+du,)d “.'+D, d u‘,)(d M;
d¢ \dff' de/ d¢- de™ /\de’
|

The form of the general solution to eqn (22) is the same for all degrees of approximations and reads

0;=(C/},cos @ +(C/},sin ¢'+(C,I)}<P}"'(C,/)a¢‘:+(C7)5¢’+(C:)n+<ff)l

i 48] A 3 23)
- (A: +Bf) ! . - _ _(A,(Cl,)g+6B,(C,)1) ]
W= WEY +D,)((C')' sin = (C’)rcos @)= 3(C)s ¢" ~2(C')s @ A +(fih
where (C!),, k=1.....6 are unknown constants and (f), and (f/). are functions of ¢ given by the right-

hand side of eqn (22]. By introducing eqn (23) into the boundary and continuity conditions {6)-(16) the
problem is reduced to solve a system of linear equations with 18 unknowns for each degree of approxima-
tion - cach value of j;. Formally the equation system reads

la fiC=[g'] (24)

where the matrix @’ is a function of geometry and material parameters and the vector g’ is given b
(), and (f ), and its derivatives. Note, however, that in the case of j = 1 the only non-zero terms in g’ are
due to the boundary condition (8§).

The solution for the unknown constants (C,) in eqn (24) can then be given in closed form for each
degree of approximation even though some tedious but otherwise straightforward calculations are
required. However, for brevity the final solution to eqn (24) is not given.

In order to gain confidence in the asymptotic solution described above, finite element calculations were
performed using the ABAQUS program system™ with eight-node plane strain elements. Remembering
that symmetry prevails around ¢ = 0. half of the panel were discretized into a set of 66 elements and the
calculated displacements were compared with the ones given by the asymptotic solution for different
material and geometry combinations.
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4 THE ENERGY RELEASE RATE AT
DELAMINATION GROWTH

As mentioned earlier. the criierion adopted for
initiation  and  continuation  of  delamination
growth is that the energy release per unit area of
growth will attain a critical and constant vatue.
When crach growth is self-similar it is then a
straightforward matter to determine the rate of
change of potential energy of the system. In a
general situation, however. the resistance of crack
propagation may be mode-dependent and in-
homogeneity of crack parameters might become
quite intricate. This matter will, however. not be
considered in the present analysis.

In the case of a composite plate. local values of
the energy release rate taking due account of non-
linear kinematics in a general situation have
recently been derived by Storakers and
Andersson” starting from the von Karman plate
theory and first principles. Thus, these writers
found that the energy released at crack advance
daix,) at a crack contour T, having the local
normal n,,. could be expressed as

—oU=[|Psln,ny0adr, (25)

where P,; is a plate analogue of Eshelby’s
momentum tensor and || || denotes its jump deter-
mined from the individual plate members inter-
secting at the crack front.

For a composite plate. P, explicitly reads

Pa/f = Wéuﬁ - Nu-,'luy,ﬂ + Aln;uul.rﬁ - Quﬁu.\ﬁ (26)

where W denotes the plate strain energy density
and Q, is the effective shear force.

As discussed by Storakers- no fundamental dif-
ficulties appear when extending eqns (25) and (26)
to apply also to non-linear panel problems. In fact.
without going into details, when the Donnell
approximation for kinematics is relied upon and
plane strain conditions prevail only

l.(zl._..}..‘:.‘ (‘)7
R d¢ R =0

need 1o be introduced as a replacement for u... 8
in eqn (26). '

With (27) introduced as a replacement in eqn
{26) the released energy per unit area can be
determined as

G=P -P.-P (28)

in obvious notation.
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With the aid of the adopted constitutinve equa-
tion, dervation of the £'-values for the individual
panels expressed in the displucements ¢ and ws
quite straightforward. It terms that do not con-
tribute to the total energy release rate inegn 28
due to compatiihity and continuiny of dynanne
variables at the crack front, are neglected then

P A [de I (dw ) de
il il t Uil alloenedll onans e
2R \dy 2R \dy ) | dy

B [, dr I (dn-,‘)‘)dfn-

+ R et 1 S bl B ——

2R dg © 2R dy d¢ -

__1_)_ (i‘_ls_ ) ")g
2R \d¢~ B

Once the solution to ¢ and wis known 1t is then
a routine matter to determine the energy refease
rate by aid of eqns 1 241 and {25, even though due
account has to be taken of the degree of approxi-
mation in the asvmptotic solution. When present-
ing explicit results it proves suitable though 1o
introduce a dimensionless measure defined by

G=GR*ID, 30

5 RESULTS AND DISCUSSION

Most of the results presented refer to a situation
with a panel composed of two individual lavers,
separated by the delamination. with equal or dif-
ferent material properties. The governing material
parameter in this two-layer model is then

SN 5 (y e
k;’—‘[:._"’ |- E, 19,}‘/L.,,_» a1
E (1-E (v, V/E, )

with index 2 and 3 referring to the lower and
upper laver. respectively. and Young's moduli and
contraction ratios in obvious notation. It s
belicved that the results provided by these caleu-
lattons give sufficient information as  regards
energy release rates and displacements for most
practical applications. However. in order to
examine in more detail the important features at
more realistic situations some results are also pre-
sented for a composite panel with 4 (0/90/0/90, -
lavup.

The results denived by the asvmptotic method
outlined above are. with few exceptions, second-
order approximations. For the present purpose
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Fig. 3. Encrgy release rate. G=GR- D, as tuncnion of

preseribed displacement, ¢, for dificrent values of delami-

nation thickness, t=1./1,. ¢, =12% ¢.=60°. R=10(:
e k=0 ——— k= ==k, = 10,

this order of approximation appears to give ade-
quate information as regards the important
features of the problem. a matter that will be dis-
cussed in somewhat greater detail below.

The first results shown in Fig. 3 concerns the
dependence of the energ: release rate on the pre-
scribed displacement for different values on the
delamination thickness, here represented by the
parameter t=1,/1,. and the material parameter
k,. Obviously the energy release rate increases. in
many cases rapidly. wil. the external loading and
at least when k| takes on values close to one the
midplane delamination (7 = (-5) seems to produce
the highest values on the energy release rate. This
is not. however. the case for relatively large or
small k.. 10 or 0-1 say. Especially for small values
of k, the magnitude of the energy release rate
increases with increasing 1. The latter observa-
tion. though, is due to the fact that in this two-
laver model the thickness of the lavers is
dependent on the delamination thickness. As will
be shown below in a more realistic situation with a
composite panel with fixed thickness of the lavers
the mudplane delamination alwayvs gives the
highest value on the energy release rate.

In Fig. 3 k, takes on values between -1 and 10
and this 1s believed to be representative of most
commercially used composite materials. How-
ever, results for more extreme numbers of &, will
be presented below.

It should be noted that the results in Fig. 3. and
in the sequel. are all pertinent to a radius of curva-
ture, K. being equal to 100. This value may

perhaps be somewhat low from a pracucal point
of view but was chosen in order to be able 1o
include considerable non-lincar eftects n the
analvsis 0 reasonable values of the prescribed
displacement ¢, ar.. of the transversal displace-
ment. Remember. though. that with increwsing
values of R the non-linearity of the solution will
decrease rapidly. a fact that sigmficantty stmplifies
the treatment of these tvpes of problems.

In Figs 4-6 the energy release rate 1s plotted as
a function of the crack length. or crack anle. ¢,
for different material and geometry combinations.
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Fig. 4. Encrgy release rate. G =GR/D,. as function crack
length, ¢,. for different values of delamination thickness.

r=nl,., ¢.=25 R=100. r,=1. (— —ik =01,
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Fig. 6. Energy release rate. G=GR/D,. as function of
crack length. ¢ ,. for different values of delamination thick-
ness. T=1i. ¢, =60, R=100.4 =1.¢,=1.

When dealing with flat panels almost with no
exception the energy release rate is a monotoni-
cally increasing function of the crack length.!"!!
This is not, however, the case for curved panels.
Instead. as may be obvious from Figs 4-6, the
energy release ratc will attain a maximum value
and only at early stages of crack growth is G an
increasing function of the delaminction length. In
this sense delaminations in panels, at least for
these particular types of problems, grow in a
stable manner and crack arrest is a likely event.

It is also interesting to note that the longest
period of unstable crack growth apparently
occurs when 7 takes on values close to 0-5. This
further confirms the fact that a midplane delami-
nation from a crack growth point of view is the
most dangerous situation, both as regards initia-
tion and stability of growth. Even with this type of
delamination present, however. crack growth is
essentially a stable process.

In Figs 7 and 8 t.c energy release rate given by
the second-order approximation is compared with
results from a linear solution, in this case repre-
sented by the linear energy release rate, G, . As
may be obvious, the linear results give quite
accurate estimates on the energy release rate,
except for small values of k,, when the delami-
nated part of the panel is thin, =01 and 0-8 say.
However, when the delamination is close to the
midplane of the panel. or when ¢, takes on small
values. non-linear effects dominate.

Another feature analyzed in the present work is
the effect that the bending-stretching coupling,
represented by B,, has on the energy release rate.

ha
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o
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Fig. 7. Normalized energy release rate. G /G, . as funcuon of
prescribed displacement. ¢, for different values of de-

faminanon thickness, =1/, ¢, =1.2% ¢.=60" R= {0
k,=1.
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Fig. 8. Normalized energy release rate, G/G, . as functian of

prescribed displacement, ¢, for different values of delami-

nation thickness. t=1/t,. ¢, =12°. ¢.=60°. R=100:
(e miky, = O] (== =)k, = 10.

This coupling appears notoriously in these typcs
of problems and does. almost without exception.
complicate the anal,.is. in Fig. 9 the ratio
between the energy release rate calculated with
the bending-stretching coupling neglected. G, ...
and the one derived by a complete analysis is
depicted as a function of the material parameter
k,.Itis obvious that in the present case this coupl-
ing has a very significant effect on the results even
though, as regards tnitiation of crack growth, the
estimates are almost without exception conserva-
tive. It must be remembered, however, that with
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Fig. 9. Normalized energy release rate. Gy.../G. as function
of reduced modulus ratio. &, for different values of delami-
nation thickness, r=#/1,, ¢, =12°. R=100, ¢, =1,

=25 1= 1g, = 60"

the layup presently analyzed the bending-stretch-
ing coupling is present only in the undamaged part
of the panel. which from a practical point of view
is perhaps less important than a situation with
non-zero B,-values in the panels above and below
the crack. This case will, however, be discussed
later.

In Figs 10-12 results are shown pertinent to a
composite panel witt a {0/90/0/90),-layup. with
the orthotropy angle defined as the angle between
the fibre direction and the ¢-axis. The ratio
between the Young's modulus in the fibre direc-
tion and perpendicular to the fibres was in all
cases chosen as 10. a value representative of a
large number of commercially used composite
matenals.

In Figs 10 and 11 the energy release rate is
plotted as a function of the crack length for dif-
ferent values on the parameter L. which in these
calculations is defined as the number of layers
below the delamination (ranging from 1 to 7). As
may be seen from the figures these results are in
obvious agreement with the conclusions drawn
above. That is. crack growth in these types of
panel problems is essentally a stable process and
growth is most likely to occur for a midplane
delamination.

Some calculations were also performed on a
composite panel with an antisymmetric layup.
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Fig. 10. Encrypy release rate. G =GR 7. as tuncton of

crack length. ¢ . tor ditterent values of deluminanon thick-

ness as defined by the parameter Lo ¢ = 90 R= o0,
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Fig. 11. Energy release rate. G=GRY/D,, av function of
crack length, ¢, for different values of delaminanon thick-
ness as defined by the parameter L. g.=90° R=]100,
r, = 1

[

The behaviour of the energy release rate in this
case was essentially the same as for a symmetric
layup, both as regards initiation and stabilitn of
crack growth.

In Fig. 12 the effect of neglecting the bending-~
stretching coupling mentioned earlier 1s examined
and the values on the energy release rate are com-
pared with results from a complete analysis. It
should be noted that in this case the coupling is
present only in the part of the panel above and
below the crack. As may be seen from the results
the effect of neglecting the coupling tn the analysis
is not particularly dramatic even though slightly
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Fig. 12. Energy release rate. G=GR/D,. as function of

crack length. ¢,. for different values of delamination thick-

ness as defined by the parameter L. ¢.=90° K= 100.

=100 : non-linear asymptotic solution. ‘- -~/ non-
linear asvmpiotic solution with 8 =0, i=1.2.3.

non-conservative estimates on the energy release
rate is obtained.

No results have been given for the case of nega-
tive values on the prescribed displacement o,
This is due to the finding that for every material
and geometry combination analyzed this feature
resulted in crack closure and such event will
undoubtedly cause very low values on the energy
release rate at the crack front, even when contact
effects are considered.

The presented results are all pertinent to the
boundary conditions as described in Fig. 1 and
formulated in eqns (8) and (9). However, a
number of calculations were performed with
other conditions at @ = @. and these results were
ewsentially in qualitative agreement, as regards
energy release rates, with the ones presented
above, although in most cases at a significantly
lower level.

As regards realistic numbers of the critical
energy release rate, certainly a wide scatter of
results exists. However, when examining com-
mercially used composite materiais and their
practical applications the conclusion is that the
energy release rates calculated above definitely
falls in at least the lower range of the critical
values.

Finally in Fig. 13 results given by the asymp-
totic method is compared with results calculated
by using the finite element method. As may be
seen, the two methods give almost identical results
for the transversal displacement even at high
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Fig. 13. Transversal displacement. v, 0. as function of

prescribed displacement. ¢, ¢, =12°% ¢-=60° r1=01]

R=100. h;=1: i non-iinear asymptotic solution.
i- -~} finite element solution, ' — - —+ hinear solution.

values of the outer loading. This was the case for
all analyzed combinations of material and geo-
metry combinations. and at least for values of 7,
up to 10 the relative difference in calculated dis-
placements between the two methods never
exceeded 5%, a fact that certainly gains con-
fidence in the second-order asymptotic method
used in this work as a tool for capturing the
important features as regards delamination
growth in composite panels.

6 CONCLUSIONS

In contrast to what is known for flat panels the
energy release rate for curved panels. at least in
the present setting. attains a sharp maximum at
early stages of crack growth. This indicates that a
progressing delamination is very likely to arrest.
especially so when remembering that the resulting
energy release rates in most cases were small com-
pared with realistic values on the cntical energy
release rate.

In many situations, quite satisfactory estimates
of the energy release rates could be obtained
when neglecting non-linear effects. This was. how-
ever, only the case for thin delaminations. Also,
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the effect of the bending-stretching coupling
could under certain conditions be neglected.

essentially though only when this coupling was not
present in the undamaged part of the panel.

The boundary conditions proved to be of
minor importance as regards the qualitative

behaviour of the energy release rate. However,
crack closure effects are to be expected at nega-
tive valnes of the prescribed displacement.
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The growth of delamination cracks trom holes and norches 1n laminated bottle malriy compontes s addressed Tt s
demonstrated that the behavior is strongly influenced by tractions on the delamination crack taces, cuused cither by ntact
matrix figaments or by bridging fibers. These tractions cause the phase angle of loading & usocuted with delamination o
increase appreciably as the crack extends. cuusing mode o be suppressed This effect can lead o increased resntnce o
delaminauion as the cruch extends. whenever the fracture mechanim along the delamination plane hus o ¢ dependent

fracture encrgs. Trends in resistance cunves are predicted.

1. Introduction

Mixed mode cracking is an important damage
mechanism in laminated brittle matrix compos-
ites. such as ceramic matrix. carbon-carbon. and
epoxy matrix systems (Shaizero ¢t al., 1990: Wang.
1979; Trewetthey et al.. 1988. O'Brien, [982) and
in wood (Ashby et al.. 1985). Such damage is
manifest as delaminations which occur from edges
and from either notches (Fig. 1) or holes and as
interlaminar cracks which are formed in regions

<
STRESS

of high in-plane shear stresses. Many of the im-
portant modes are manifest upon the flexural and
tensile testing of notched beams and plates. While
the damage can have some beneficial influences
on performance in special loading situations. gen-
erally these mechanisms are detrimental and
should be suppressed to achieve acceptable struc-
tural performance.

Preliminary studies of delamination crack
growth resistance have indicated that cracking is
strongly resisted by fibers that cross-over the crack

Fig. 1. A delamunation crack propagating from a notch in a laminated ceramic matrm composite.

016706636 792 /805,00 ¢ 1992 - Elsevier Science Publishers BV, All rights resened
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Fig. 2. A series of resistance cunves evaluated tor delamina-
uon crach growth in a laminated ceramic matrih composite
when fibers bridge the crack surtuces.

planc leading 10 a resistance curve (Sbaizero et
al.. 199(; Bordia et al.. 1991) (Fig. 2). An impor-
tant issue thus appears to be the presence and
magnitude of forces normal to the crack. induced
either by intact reinforcements or by matrix liga-
ments. Understanding of this probiem also assists
in the prediction of effects on mixed mode crack-
ing of a small volume fraction of reinforcements
normal to the crack plane. in accordance with
3-D reinforcing schemes. Toward this objective,
the present studv encompasses calculations of
delamination cracks subject to crack surface trac-
tions. Some approximate analytical results are
presented first to provide the relevant back-
ground. Then, finite element results are gener-
ated and used to establish the major trends in the
delamination resistance.

2. Some basic mechanics

An assessment of the cffects of normal trac-
tions on delamination cracking is obtained (Fig.
3a) by applving an axial stress o 100 . composite
causing a delamination crach to ex..ad from an
cdge notch. depth A, The delamination crack is
also subject to surface tractions. magnitude p.
For the problem posed in this manner. the body

DYlamienation crachany

i~ strictdy hinear and consequenthy. the stress -
tensity tactors induced by oo und by opocan be
added together to gine the net magniudes

Some important background s provided
soluttons tor 4 laver on o substrate with net
section width H subgected 10 an end toree 77 and
¢ moment M {(Fie. 3b Rigorous analvtica? solu-
tons exist tor the steady-stite situation wherem
the crack length « tv long compiared with the
laver thickness, a7l > 3). For the clasucath
homogeneous case. the solution has the form
(Suo and Huchinson. 1989)
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: |
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Fig. 3 (a1 A schematic of the defamination crack configura-
tion used for the analysis. (B A Taver subject to an end load P
and moment A and the equivaience with the problem posed
n fa)
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where Ay and Ay are the mode Fand mode 1
SEress mmtensiny tactors, respectnely. and A and |/
are geometric factors given by

| . : ] .
— = | ~an -6y~ 3. - = 12{l - n).
K n=bn n ; { n
T TR o h
with, ——=— = n~(1 - n)J. = —. {2)
TR Y

Note the important cffect of the relative notch
depth. /o ‘M. on the contribution caused by the
end joad. P.

The effect of the stress o in the present prob-
lem is directly analogous to that of an end force.
with

P=oah. {(})

because the stress in the body below the notch
does not contribute to the stress intensities on
the delamination crack. Conseqguently. the cffects
of o arc given in steady-state by

K Cos w Ky sSin @

- (4)

avh Vaa avh V2 A

An appreciable influence of the relative notch
depth. i /H. is apparent. The encrgy release rate
% and the phase angle of loading & can be
derived from Eq. (4) using

E:ﬂ hd hl
T =K+ K (5a)
and
d=tan" (KN, /K,). (5b)

The magnitudes arc
Es 1

o1 =) 1A tou)
and
r=w=352.1°-3n. (6b)

The stress p on the crack face imposes a
moment M pcr unit length on the laver. When p
15 uniform and acts over the cntire length of the
crack (Fig. 3u). Af is given by

M= —%pll:. (7)

{3 L g ko [

In addition to this moment. shear actormations
exint an the beum abone the crack., which arc
likehy 1o have an important imtluence on the stross
mensitios, except when o £ large Inscrung
Ly, thnto Bg ofr thus gives approamate rosults
for the steady-state stress mtensities

T\ NI - Y )

P T

KNy, COMw~ Y u - )
mh R, /-I’ ‘

Combining the contributions o A from o and
. the tp Usteady-state” stress intensities are

Ki  covw 1y p,a ~sintw~y)
v ai L bl | B

(4

-1

1 sintw 1, p,a,corfw=15)
-2
2Vetth

avh VA V2

An important preliminany {feature of the solution
is the rccognition that the mode 1 tip stress
intensity diminishes as the crack extends whereas
the mode 11 component increases. because of the
dominant effect of the moment contribution
caused by p. Furthermore A} becomes zero at a
critical crack length a_ given by

(aL '_7(0 j'l oS w 0
lz)*-p)VA sin{w + y) (h

A small stress p relative to o is thus sufficient to
close the delamination crack at lengths of order
few times the notch depth. /1.

The interpretation of experimental results s
facilitated by obtaining the tip encrpy relecase rate
“ and the phase angle of loading ¢ as a func-
ton of delamination crack fength. Hence. from
Eq. {9

1"'

Es! i

Y 7pi-a
_ +__(_, (=
ah(t-1=)y 24 Slle h

siny pa
Al oV !

(11




™ G Dooctw
and
Ul - (1)
where

I d p
un = E \ 7 ; /‘1 ' CON Y

{ I —-{- P,d ) '

.!LI_E\T;'/—I NS NS

Naote that i general =7 8 larger than - i Fy.

tout. When =111 <= 1, the valuc of =77~
d=d_Is

%

St

Jh =l cont w= b, (12)

Consequentiy. the somewhat unexpected result
emerges that the tractions do nor shield the crack
tip. Other features are necded 1o explain the expert-
mental observation that %, increases as the crack
extends (Sbaizero et al.. 1990 Bordia et al.. 1991).

The above behavior is modified when the stress
p acts over a definite length [ rather than the
entire crack length. For that case. « in Eq. (11} 1§
replaced by [, whercupon %' and o' arc inde-
pendent of the delamination crack length when a
is large comparced with & and /. Then. provided
that the crack does not arrest before ¢ exceeds /.
the delamination will continue to propagate sub-
ject to steady-state values of = and &',

3. Numerical solutions
3.1 The finite elemenr method

Stress intensity factors and cnergy release rates
are determined with the finite element code.

ABAQUS. Svmmetny about the midsection of the
beam. depicted n Fig. 3a. allows the requisite

solutions to be obtained by considering one half

of the beam. The {inite element mesh used in the
calcufation s shown in Fig. 4. To ensure the
accuracy of the “steady-state™ result, the beam
length £ s chosen to be 15 (Fig. ). Since the
problem is hncar. calculations are carried out
separately for the axial loading o and ftor the
surface tractions p.

{0 e

Fig 3 Fimte cloment mosn used for the calculatnons

Stress antensities Ay and Ay, dare caleulated
from nodal displacement A and deu, in the
crack up region. using (Rice. 1968)

K=+ [ ]
All,f- 3 \ '-_,_’\II
Su 2=
and
K+ 1 7
A, = 3 \ :::K.. {13)

where =3 —Jv and u is the shear modulus,
The values of A thus computed are then used to
obtain % which. in turn. is compared with the
value of the J-integral given in the finite element
calculation, to asscss consistency.

3.2 Results

Solutions for A and #° have been evaluated
separately for the applied wtress. e, and the crack
surface traction. p. The effect of o obtained tor
h/H =1 are plotted in Fig. 5. using the nondi-
mensional parameters Kool and Ex o hi(] -
7). Alse indicated on the figure are analvtical
results for steadv-state crack extension. Two as-
pucts of the results are noteworthy, The steads-
state values of A/ovh and E% ca bl = 7)) arc
mn close agreement with the analvtical solutions
tEq. (40, Furthermore, steads-state conditions
tor mode | develop even when o 76 < 1. but onh
occur for mode 1 when o8 = 20 In addition.
there is an appreciable decrease in the energy
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Fig. 3 Nondimenvonal stress antensities and energy release
rate as o tunchion of relinne delamination crack fength tor an
applied stress. o,

release rate between U <a/f < 2. indicative of a
region of stable crack extension.

The stress mntensities caused by p acting along
the entire crack surface are presented using the
normalization suggested by Eq. (8): K(h/a)/
pVh . The results. plotted in Fig. 6, reveal that the
nondimensional K, attains “steady-state” at
a/h =1 and furthcrmore. the steady-state vaiue
is comparable to the beam theory prediction from
Eq. (8). However. the nondimensional K; does
not attain “steady-statc.” even for a/h=35. In

DIcianunative: vrde ko [
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tons poon than anticipated by the anabvicad
esults Ry, (Tan,

4. Resistance curves

The delaminaton fracture resistance can be
ascertained from the preceding resolts by adopr-
ing a crack extenvioni crirenion. This ¢ritenon e-
quires that the up cnergy reledse nte - F attains
the fracture energy It of the material alony
the delamination plane. The tracture energy tvpi-
cally has the form Uensen ¢t al., 1991)
Ny =nf1-1—-aysin® @] (14)
where I, is the fracture energy at ¢ =0 and A-
is a material dependent coefficient. typically in
the range 0.1 to U.3.

Letting & in Eq. (6a) become the measured
energy release ratc 3. the following result is
obtained

:n||;|
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Fig. 6. Nondimensionul stress intensity as a function of relative delammation crack fength for crack surtace tractions. p () A, and
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N\

where ic 2 nondimensional parameter repre-
senting the oftect of p.

Pl =)

YN

\

{1

Furthermore. equating to I' and using Lby.
(13). the normalized energy releuse rate = 1,
for “steady-state™ s determined by the folfowing

sel of parametric equations

I, .
[1=(1-a0)sin® 0]
“x
1 L iy ' Lo 1y 17a)
=l-—(/;) = 2sin vy’ 1) (17a
“ R ! \ R ‘
and
Lf'l:w‘*'d’ (17}))
and
(f)— f‘ Q0 1 2
tan —V;—;(d) cos y
T . B
x l—\/:—(ld)'siny . (17¢)
R

where [, is a characteristic delamination crack
length

NEE!

It is readily apparent from Eqgs. (17) and (18) that
Fo/1, depends on X only through /. The trends
in %/ [, as a function of I, are plotted in Fig. 7
for different values of A.. Resistance curce behat -
ior is predicted. Each resistance curve in Fig. 7
terminates at a critical value of /; at which the
phase angle &' becomes = /2. In addition. it is
apparent that the value of A. has a strong cffect
on the predicted resistance behavior.  [ndeed.
when a~= 1 the resistance % g decreases. because.
as already noted. the tractions p wnduce ar: appre-
cuable K . having the same sign as the contribution
from o,
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The preceding rosults negleet cftects of the
shear deformation. which provide o contribution
to A} The resistance curve behavior in the tran-
sient region at small o At is also neglected, To
assess these etfects, the fintte element results are
used to estabhish the trends in delumination resis-
tance. For this purpose. it is noted that. tor cach
crack length o 74 the following nondimensional
quantities apply.

. Knl . vall
L!:(r_\j-l:. L::(nﬁ. (lq)
Footo gl B

pvh mh

where K, and K, are stress intensities caused by
o and p. respectively. Then the normalized de-
lamination energy release rate 4./l can be
determined from the following set of paramctric
equations

0 R -
— 1~ {1 =A,)sin" !
gn[ ( 3 J
= (E, = ¢F\) + (Es+ (FY) /(E] + E3)
{20a)
and

tan ¢' = (Ey + {F2)/(E, — {F)). (20b)
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e
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e
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Fig 8 Numerical prediction of resistance cunves tor 2 =10
and B H =04,
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Now-

S 3t e Drace (€8T a0
g, Yo A comparson of the snalvtical and numenical rews
tance cunes for the case 2 =10 8 H =01 and A= 0]

where

I.l)

(=2N(E;+E?) (21)

[ o

i

Trends in ¥ /1, as a function of a /h are plot-
ted in Fig. 8 for X =0.001. i/H =0.1 and for
different values of A.. The resistance curves ob-
tained from the finite element calculation are
similar to those apparent from the stcadv-state
analysis (Fig. 9) except that the ¥ /I, are shghtly
higher.

5. Concluding remarks

The predicted resistance curves %, (Figs. 7
and 8) have the same features as the curves
measured for ceramic matrix composites (Fig. 2).
An influence of bridging fibers and /or ligaments
thus appears to provide a plausible rationale for
resistance curve behavior in delamination crack-
ing. with the tractions p apparcntly governed by
the shiding resistance along the fiber /matnx in-
terface {Bordia et al., 1991). However. one impor-
tant finding of the calculations is that the slope of
the resistance curve s a strong funcuon of the
matrix tracture mechanism. Notably, 4 matenal
with shear insensitive matrix fracture cnergy
would be susceptible to unstable delamination
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cracking. decaine 4, decreases sl crack exren-
sien Comverselv. when the matrin tracture energy
mcereases uappreciibly with increase in phase an-
gles o rses with crack extension and delumina-
non criaching ocears stitbh, subiect o mereasing
apphicd loads. -t basic wnderstandmg of the matria
Pravtire process is thus needed 1o predicr and inier-
prec dehonmation cracking,
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I. Introduction

The aim of this chapter is to pull together recent work on the fracture of
layered materials. Many modern materials and material systeins are lavered.
Interfaces are intrinsic to these materials, as are heterogenreities such as
residual stresses and discontinuities in thermal and elastic properties. The
structural performance of such maierials and systems generally depends ¢ -
just these features. The potential applications of fracture mechanics of
layered materials ranges over a broad spectrum of problem areas. Included
are: protective coatings, multilayer capacitors, thin film/substrate systems
for electronic packages, layered structural comgosites of many varieties,
reaction product layers, and adhesive joints.

Attention is confined in this chapter to elastic fracture phenomena in
which the extent of the inelastic processes is small compared with the relevant
geometric length scales, such as layer thickness. For the most part, the
separate sections are designed so that they can be read independently. The
main exceptions are Section I, which presents the theory of mixed mode
interfacial fracture underlying many of the applications, and Section I1I,
which catalogues a number of basic elasticity solutions for layered systems
referred to throughout this chapter. Then follow sections on test specimens
for determining interfacial toughness, fracture modes in thin films under
either tension or compression, blister tests, and, lastly, failure modes of
adhesive joints. We believe that most of the important fracture concepts for
layered systems emerge in the analysis of these examples. One concept, in
particular, that plays a central role is the idea uf steady-state cracking. In
almost every application considered here, a steady-state analysis provides a
simplified solution that is directly relevant to design against fracture.
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This chapter builds on earlier work by many researchers, but specitically
the contributions to the elasticity theorv of cracks in lavered materials of
Erdogan and coworkers ir the 1970s, which compri-: ' mmost of the available
solution« until recently. Special mention must also be made of the article on
thin films and coatings by Gille (1985), which gives a comprehensive treat-
ment of fracture modes without the insights from the recent developments
in interfacial fracture. It i1s especially these recent develonments that have
transformed the subject. We have been fortunate to have been involved
with one of the groups (that centered at the University of California, San'u
Barbara) that have been concerned with the extension of both experimental
and theoretical aspects of fracture mechanics to interfacas. This involve-
ment is reflected in our approach as well as the topics that have been chosen
for presentation.

Structural reliability of muhilayers is a fast growing field. An article
written at this point is most likely transitory work, although we have tried
t> put various aspects into perspective, and we believe some of them are of
permanent nature. Like most review articles of tiis kind, subject matter
with various degrees of novelty that has not been published previously is
incorporated. Some fill gaps, others are ready extensions, and still others
are simply speculations. The writers sincerely urge the practitioners in the
related disciplines to use the article critically, so that the results can be
validated, expanded, or modified. A more consolidated version of the
article could then emerge on a later occasion.

II. Mixed Mode Fracture: Crack Tip Fields and Propagation Criteria

There is ample experimental evidence that cracks in briitle, isotropic,
homogeneous materials propagate such that pure mode I cconditions are
maintain.d at the crack tip. This appears to be true for fatigue crack growth
and stress corrosion cracking as well as crack advance under monotonic
loading. An unloaded crack subsequently subject to a combination of
modes I and 11 will initiate growth by kinking in a direction such that the
advancing tip is in mode 1. A crack in a material with strongly orthotropic
fracture properties, or a crack in an interface with a fracture toughness that
i1s distinct from the materials joined across it, can experience either kinking
or straight-ahead propagation under mixed mode loading depending on a
number of factors, inciuding the relative tonghnesses associated with the
competing directions of advance. This section gives results from studies of
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crack up fields for specifyving criteria tor siraight-ahead propagation or
kinking under mixed mode loading. An assessment of the competition
between different directions of advance can also be made. Homogeneous
materials are considered first, starting with the isotropic case and going on
to orthotropic symmetry. Cracks on interfaces berween dissimilar isotropic
elastic solids are dealt with last.

A. IsoTtroric ELASTIC SoLIDS

The stress fields at the tip of a crack in plane stress or plance strain for a
homogeneous, isotropic elastic solid have the well-known general form

o; = KNQ2nr7"' "6l (8) + Ky Call @) + T6,,6,, (2.1

where J,; is the Kronecker delta and r and 6 are polar coordinates centered
at the tip as shown in Fig. 1. The f-variations are given in many texts on
fracture. They are the same for plane stress and plane strain, except g,
which vanishes in plane stress and is given by vig,, + 0,,) in plane strain,
where v is Poisson’s ratio. Mode 1 fields are symmetric with respect to the
crac: line with ¢, = 1 and ¢}, = 0 on 8 = 0, while the mode 11 fields are
antisymmetric with g1y = 1 and @3 = 0 on 8 = 0. The higher order contri-
butions not included in (2.1) all vanish as r — 0. The T-stress, a,, = T,
arises in discussions of crack stability and kinking. Thus, the singular
tractions on the line ahead of the crack tip (# = 0) have the mode I and Il
stress intensity factors as amplitudes according to

t2
~—

Osy = K[ 27”')—”2, g, = K”(ZHr)-‘/z. (2.
The relative disnlacements of the crack faces behind the tip,

S, =ur,8=mn)—ur.8=-n,

X,
=
i
]
f
i r//
{7 %0
Wl e N
— - P
X, L \
.7 NS \‘/ £2
a A - 4 ~
4 »/ ~
/ N
i !
NG

Fic. 1. Conventions at a crack tip and the peometry of a kinked crack.




Mixed Mode Cracking in Lavered Materials 67

in the region dominated by the singular fields are given by

(6~.6.) = (N}, K8/ Eyr/(2my)' -, (2.3)
where
E=E/(1 =Y (plane strain)

= E (plane stress) (2.4)

and E is Young’s modulus. Irwin’s relation between the energy release rate
G for straight-ahead quasi-static crack advance and the stress intensity
factors Is

G = (A{ + R})/E. (2.5)

Next, consider a puiative crack segment of length a kinking out the plane
of the crack at an angle Q with the sense shown in Fig. 1. When a is suffi-
ciently small compared with all in-plane geometric lengths, including the
crack length itself, there exists a relation between the stress intensity factors
K| and Kj; at the tip of the putative crack and thc tress intensity factors K
and K; and the T-stress acting on the parent crack tip when a = 0. The rela-
tion has the form

172

Kj=c K+ cpK, + bTa"'",

(2.6)
Klr[ = CZ]KI + szK” + szalfz.

The Q-dependences of the ¢’s are given by Hayashi and Nemat-Nasser
(1981) and by He and Hutchinson (1989b), while the Q-dependence of the
b’s is given by He et al. (1991).

The ratio of the energy release rate of the parent crack when it advances
straight-ahead to that of the kinked crack, G' = (K{* + K{})/E, is of the
form

G/G' = F(Q, y, n), 2.7)

where F depends on the coeffizients in (2.6). In addition, y is the measure
of mode II to mode I loading acting on the parent crack defined by

v = tan” '(K,/K;) (2.8)

and

n = Tla/(EG))'">. (2.9)

The ratio (2.7) applies to both plane strain and planes stress.

With G,.,, denoting the value of G' maximized with respect to Q for a
given y, the ratio G/G,,,, is plotted as a function of y for various values of
n in Fig. 2, which was taken from He et al. (1991). The kinking angle & at
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Fic. 2. Ratio of energy release rate for straight-ahead advance to maximum energy release
rate for a kinked crack as a functionof v = tan"(K,,/k’,). Reproduced from He et al. (1991).

which G' is maximized is plotted as a function of y in Fig. 3 for the limit
n = 0. The ratio in Fig. 2 corresponds to Fw, m = F(Q, v, n). The kinking
angle that maximizes G' is nearly coincident with the kinking angle for
which Kj; = 0, as can be seen in Fig. 3. Only for y greater than about 50°
is the difference more than one degree, and the difference between the
energy release rates for the two directions is numerically insignificant. Thus,

. ] 1 I 13 j L] H T
Q
80°1 K =0\ T
, - 1
Q e -
o
207 \. maximizes
- G! .
2o°L -
oo 1 1 1 1 1 1 1 i 1
0 20°¢ a0° 6C 8o*

Fic. 3. Kink angle as predicted by two criteria.
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for all practical purposes, there is no distinction between a criterion for
kinking based on maximizing G° or one based on propagation in the direc-
tion in which Ay, = 0. With I = A[. £ denoting the mode | toughness,
Kinking will initiate at a crack tp in a brirtle marerial subject 1o monotonic
mixed mode Joading when

G=Fly.n =0T, (2.10)

where F is the ratio in Fig. 2. Once initiated, the advancing tip will be
influenced by the 7-stress through the p-dependence of F.

B. HoMOGENEOUS, ORTHOTROPIC ELASTIC SOLIDS

Consideration will be restricted to plane cracks aligned with the principal
axes of orthotropy and crack advance that is either straight-ahead or kinked
at 90° parallel to the second in-plane orthotropy axis. With reference to
Fig. 1, let the orthotropy axes coincide with the x;-axes and take the plene
of the crack to be x, = 0 with its edge along the x,-axis. Introduce elastic
compliances of the solid in a standard way according to

&
&= Y s;0, i=1106, (2.11)
j=1

where
feil = €11, €22, €33, 2623, 2613, 2815,

{01‘} = {oll » 0224033, 0323, 013, 012]'

For the orthotropy assumed here, deformations in the (1, 2) plane satisfy
(Lekhnitskii, 1981)

&= Y b, i=1,2,6, (2.12)
i=1,2.6
where, fori,j=1,2,6,
Sijs lane stress
b, = { / N ) (2.13)
R TLRTATIN {plane strain)

with only four independent elastic constants: b,,, b;> = b,,, b,y, and bg,
(big = by = 0).

For simply connected domains with traction boundary conditions, Suo
(1990c) has shown that the stresses depend on only the following two
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(rather than three) nondimensional elastic parameters:
A= bll/b.‘:l' p= (bl?_ + %bco)/(b“b?_:f’ 2- (2.14)

This particular choice of parameters is particularly useful for reasons that
will emerge shortly. When 2 = p = 1, the in-plane behavior is isotropic
(i.e., the material is transversely isotropic with respect to the x;-axis), and
when just A = 1, the material has cubic in-plane symmetry. Positive
definiteness of the strain energy density requires 2 > 0 and ~1 < p < .

The singular crack tip fields are contained in the work of Sih e al. (1965).
Here, mode I and II stress intensity factors are defined such that (2.1) and
(2.2) remain in effect, where the functions &}, and ¢;; now depend on 2 and
p as well as 6. The displacements of the crack faces behind the tip are

(0, 6,) = A¥4Ky, A7V3K)8nb, [r/(2m)) 72, (2.15)

where n = [(1 + p)/2)""2. The energy release rate for straight-ahead crack
advance is
G = b, n(A7¥*KE + A7VAKE) (2.16a)

or, equivalently, in a notation used in the composites literature, as G =
G, + Gy, where

G, = b nA*KE, Gy = b,nA VK], (2.16b)

A crack kinking analysis as extensive as that described for the isotropic
material has not been performed for orthotropic materials. Many such
materials have strongly orthotropic fracture properties, wood and lami-
nated composites being well-known examples. When kinking occurs, it
often does so at aright angle to the plane of the crack (ie., Q = 90°in Fig. 1)
along the plane of the grain or a laminate. Suo et al. (1990b) have shown
that for Q = 90° the generalization of (2.6) is (neglecting T')

K} = ¢ ) A78K + e ATVRK, 217

K[ll = CZIA—I/SK[ + 622).]/81{”.

The ¢’s depend on p, but this dependence is rather weak.
The energy release rate of the kinked crack tip, G', is related to K| and
K}, by an expression similar to (2.16), i.e.,

G' = byyn(APKE + 2K, (2.18)
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Fi1G. 4. Normalized ratio of energy release rates for orthotropic material.

where 4, n, and p remain defined as before. Thus, the ratio of the energy
release rates for the competing trajectories can be obtained from (2.16)-
(2.18) as

G _ 1/4[ 1+
(c, + C%l) + 2(c) €12 + €160 + (ct, + )

G 2} , (2.19)
where { = A'*K,;/K;. This ratio is plotted in Fig. 4. Note that it depends on
the relative proportion of Kj; to K; but not on their magnitudes.

Suppose the main crack tip is subject to a mode I loading (K; > 0,
Ky = 0). Let T, be the material toughness associated with straight-ahead
crack advance, and Iy, be that associated with crack advance by kinking
with Q = 90°. (Note from (2.17) that the tip of the kinked crack is subject
to mixed mode with K|,/K{ = A'%c,,/¢,,. Thus Ty, must represent the
mixed mode toughness for cracking parallel to the x,-plane.) If

6.5
G' " Ty’
the crack will advance straight ahead since the condition G = T, will be

reached before G' = Iy,. The crack will advance by kinking at 90° if the
inequality is reversed. From Fig. 4, it can be seen that the condition on the
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toughness ratio for kinking is

Yoo o ripyit #, (2.20)
I

where f(1) = 0.26, f(1/10) = 0.29, and f(10) = 0.16.

C. INTERFACE CRACKS

The emphasis of much of this chapter is on the mechanics of interfacial
fracture and applications. This section introduces some of the basic results
on the characterization of crack tip fields and on specification of interface
toughness. If an interface is a low-toughness fracture path through joined
solids, then one must be concerned with mixed mode crack propagation
since the crack is not free 1o evolve with pure mode 1 stressing at its tip, as
it would in an isotropic brittle solid. The asymmetry in the moduli with
respect to the interface, as well as possible nonsymmetric loading and
geometry, induces a mode 2 component. The competition between crack
advance within the interface and kinking out of the interface depends on the
relative toughness of the interface to that of the adjoining material. This
competition will be addressed at the end of this section, but first it is neces-
sary to consider how mixed mode conditions affect crack propagation in the
interface. The article will focus on isotropic materials. Extensions to
anisotropic materials are reviewed in Suo (1990a) and Wang et al. (1990).

1. Crack Tip Fields

Consider two isotropic elastic solids joined along the x,-axis as indicated
in Fig. 5 with material 1 above the interface and material 2 below. Let y,,
E;,and v, (i = 1, 2) be the shear modulus, Young’s modulus, and Poisson’s
ratio of the respective materials, and let k; = 3 — 4v, for plane strain and
K, = (3 — v;)/(1 + v;) for plane stress.

Dundurs (1969) has observed that wide class of plane problems of
elasticity for bimaterials depend on only two (rather than three) nondimen-
sional combinations of the elastic moduli. With the convention set in Fig. 5,
the Dundurs’ elastic mismatch parameters are

a:}ul(K2+ 1) = waxlic, + 1) and ﬂ___ﬂl(KZ- 1) — uy(k, — ]).
mlicy + 1) + py(ee) + 1) Hy(ky + 1) + sk + 1)
(2.21)
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A more revealing expression for a is
a = (E, - E)/(E, + Ey), (2.22)

where E; = E;/(1 — v}) in plane strain and £, = E; in plane stress. Thus, o
measures the mismatch in the plane tensile modulus across the interface. It
approaches +1 when material 1 is extremely stiff compared to material 2,
and approaches ~1 when material 1 is extremely compliant. Both « and
vanish when there is no mismatch, and both change signs when the
materials are switched.

The parameter § is a measure of the mismatch in the in-plane bulk
modulus. In plane strain,

_ (= 2vy) — (1 = 2vy)

S RN TR —

(2.23)

Thus, in plane strain, f vanishes when both materials are incompressible
(vi = v, = 1/2), and f = a/4 when v, = v, = 1/3. In plane stress, f = a/3
when v, = v, = 1/3. When v, = v,, a is the same in plane strain and plane
stress.

In plane strain, the physical admissible values of « and S are restricted to
lie within 2 parallelogram encloced bv ¢ = +1 and a — 48 = =1 in the
(a, f) plane, assuming nonnegative Poisson’s ratios. The range of o and
in plane stress is somewhat more restricted. Representative material com-
binations are plotted for plane strain in Fig. 6, in every case with the stiffer
material as material 1 so that « is positive. This plot is similar to one given
by Suga er al. (1988). Note that most of the (a, #) combinations in Fig. 6 fall
between 8 = 0 and f = «a/4. Combinations that satisfy 8 = 0 give rise to
simpler crack tip fields than combinations with # # 0, and special attention
will be paid to this restricted family of bimaterials in a separate section
following this one.
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Fig. 6. Values of Dundurs’ parameters in plane strain for selected combinations of
materials.

Solutions to bim  .al interface crack problems were presented in the
earliest papers on we subject by Cherepanov (1962), England (1965),
Erdogan (1965), and Rice and Sih (1965). Williams (1959) investigated the
singular crack tip fields. Here, the notations and definitions of Rice (1988)
for the crack tip fields will be adopted since these reduce to the conventional
notation when the mismatch vanishes. Take the origin at the crack tip, as in
Fig S, with the crack flanks lying along the negative x,-axis. The dominant
stress singularity for any plane problem in which zero tractions are
prescribed on a portion of the negative x,-axis ending at the origin is of the
form

0.5 = Re[Kr)2nr)"Y gl 58, &) + Im[Kr)2nr)~ ' 20l(8, £), (2.29)

where i = V-1, r and 6 are defined in Fig. 5, and
£ = iln(l - B) . (2.25)

The complex interface stress intensity factor K = K, + iK, has real and
imaginary parts K, and K, respectively, which play similar roles to the con-
ventional mode I and Mode Il intensity factors. The quantities ¢! and o'}
are given by Rice er al. (1990); they reduce to the corresponding quantities
in (2.1) when ¢ = 0.
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The singular fields are normalized so that the tractions on the interface
directly ahead of the tip are given by

Gsy + Gy = (N, + iK)2rr) ' e (2.26a)
or
g1 = Re[Kr*)2nr)~ V-, g,» = Im[Ar“)2nr)~' ° (2.26b)

where 7 = cos(eInr) + isin(eInr). This is a so-called oscillatory singu-
larity, which brings in some complications that are not present in the elastic
fracture mechanics of homogeneous solids, as will be discussed in detail
later. The associated crack flank displacements a distance r behind the tip,
9, = u(r,8 =m) — ui{r,8 = —n), are given by

) 8 (K, + iKy) [/ r\'"? .
PR = e e 2.27
2+ 00, (1 + 2ig) cosh(ne) E, (277) 4 ( )

where
1 1/1 1
—_— ==y = 2.28)
. 2(& E:) (2.28

The energy release rate for crack advance in the interface is (Malyshev and
Salganik, 1965)
_-pY

G
E,

(Kt + KD, (2.29)

which reduces to (2.5) in the absence of mismatch. Equations (2.27) and
(2.29) can be re-expressed using the connection 1 — 2 = 1/cosh?(ne).

To help motivate the application of the crack tip fields to characterize
interface toughness, it is useful to give two examples of stress intensity
factors for solved problems. The problem of the isolated crack of length 2a
lying on the interface between two remotely stressed semi-infinite blocks
(see Fig. 7a) was solved in the early papers cited previously. For the right
hand tip of the crack,

K, + iK, = (6% + ioR)(1 + 2ie)(na)' *(2a)~". (2.30)

This particular set of intensity factors depends on the elastic mismatch only
through ¢ and, by (2.25), is independent of «. The problem of the infinite
double cantilever beam (see Fig 7b) loaded with equal and opposite
moments (per unit thickness perpendicular to the (1, 2) plane) was solved by
Suo and Hutchinson (1990) as the special case of a more general solution
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Fic. 7. Two basic interface crach problems.

presented in Section III. The solution is
K, + iKy = 2W3MR™ 3375 — ghy 12t (2.31)

where the function w*(«, B) is displayed in Fig. 8.

2. Crack Tip Fields and Interface Toughness with f§ = 0
When £ = 0 (and thus ¢ = 0 by (2.25)), (2.26) becomes
(622, 012) = (K;, K)2nr)™ V73, (2.32)
and (2.27) reduces to
(65, 8,) = (8/E K, , K,)[r/(2m)"2. (2.33)

The interface stress intensity factors K, and K, play precisely the same role
as their counterparts in elastic fracture mechanics for homogeneous, iso-
tropic solids. The mode 1 component K, is the amplitude of the singularity
of the normal stresses ahead of the tip and the associated normal separation
of the crack flanks, while the mode 2 component K, governs the shear stress
on the interface and the relative shearing displacement of the flanks.
When f # 0, the decoupling of the normal and shear components of
stress on the interface and associated displacements behind the tip within
the zone dominated by the singularity does not occur. When 8 # 0, the
notions of mode 1 and mode 2 require some modification. In addition, the
traction-free line crack solution for the displacements (2.27) implies that the
crack faces interpenetrate at some point behind the tip. Both of these
features have caused conceptual difficulties in the development of a
mechanics of interfaces. For this reason, we have chosen to introduce the
elastic fracture mechanics for bimaterial systems with f# = 0, either exactly
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FiG. 8. Phase factor w* for the problem of Fig. 7b.

or as an approximation. The extension for systems with f % 0 will be given
in the following section, where it will also be argued that the effect of
nonzero S is often of secondary consequence.
When S = 0, take the measure of the relative amount of mode 2 to mode
1 at the crack tip to be
w = tan”(K,/K,). (2.34)

The finite crack in the infinite plane, (2.30), gives
v = tan"'(g73/033), (2.35)

while the double cantilever beam loaded by equal and opposite moments,
(2.31), has
v = w*a, 0). (2.36)

The double cantilever has symmetric geometry and loading; the asymmetry
is due entirely to the elastic mismatch. Note from Fig. 8 that the specimen
1sin mode | when o = 0, as it must by symmetry, but develops a substantial
mode 2 component when the elastic mismatch becomes significant.
Efforts to measure interfacial toughness under mixed mode conditions go
back some years (e.g., Trantina, 1972, and Anderson er al., 1974), as
reviewed by Liechti and Hanson (1988). Parallel efforts have also been
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underway to develop mixed mode fracture specimens designed to measure
the delamination toughness associated with ply separation in polvmer-
matrix composites (e.g.. Kinloch, 1987). A series of recent experiments
(Cao and Evans, 1989; Wang and Suo, 1990; and Liechti and Chai, 1990a)
have focussed on the interface between epoxy and glasses, metals and
plastics. Thouless (1990b) has carried out mixed mode toughness experi-
ments for crack propagation in the interface between a brittle wax and
glass. In all these systems, the interface toughness is not a single material
parameter, rather it is a funcrion of the relative amount of mode 2 to
mode 1 acting on the interface.

The criterion for initiation of crack advance in the interface when the
crack tip is loaded in mixed mode characterized by  is

G = I'(w). 2.37)

The toughness of the interface, I'(y), can be thought of as an effective
surface energy that depends on the mode of loading. Condition (2.37) is
also assumed to hold for quasi-static crack advance when crack growth
resistance effects can be disregar-ed.

Data from Wang and Suo (1990) for a crack in a plexiglass/epoxy
interface is shown in Fig. 9. This data was obtained using a layer of epoxy
sandwiched between two halves of a Brazil nut specimen. The specimen,
which will be considered later in Section IV.C.2, enables the experimental.st
to vary the mix of loading from pure mode 1 to pure ;mmuie 2 by varying the

120+
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FiG. 9. Interface toughness function for a plexiglass (#1)-epoxy(#2) interface. Obtained
using a Brazil nut specimen by Wan.: and Suo (1990).
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anele 6 of the compression axis (see the insert in Fig. 9). For the plexiglass
(£1)7epoxy(#2) interface in plane strain,

a = —0.15, f = —-0.029, ¢ = 0.009. (2.38)

The error in taking # = 0 is negligible for this svstem s will be clear in the
next section. Note, for example, tnat the error in G in (2.29) from this
approximation is less than 0.1%.

3. Phenomenoiogical Characrerization of Interface Toughness

A micromechanics of interface toughness i1s not far advanced. An
overview of various mechanisms responsible for the sirong dependence of
interfaced toughness on mode mixity is given by Evans er al. (1990). Two
primary mechanisms are asperity contact and plasticity. Asperities on the
fracture surfaces will tend to make contact for some distance behind the tip
when mode 2 is present along with mode 1. A micromechanics model of
shielding of the tip due to asperity interaction was presented by Evans and
Hutchinson (1989). That model led to a prediction of T'(y) in terms of a
nondimensional measure of fracture surface roughness. Crack tip plasticity
also depends on y, with the plastic zone in plane stra:n increasing in size as
|/ increases, with G held fixed (Shih and Asaro, 1988). When «.n interface
between a bima+erial system is actually a very thin layer of a third phase, the
details of the cracking morphology in the chin interface layer can also play
a role in determining the mixed mode toughness. Some aspects of cracking
at the scale of the interface layer itself will be discussed in the final section
of this chapter. The approach for the time being is that the interface has
zero thickness and is modeled by the toughness function I'(y) vtich, in
general, must be determined by cxneriment.

A simple, one parameter family of mixed mode fraction criteria that
captures the irend illustrated by the data in Fig. 9 1s

E;\(KE + ik} = Gf. (2.39)

The parameter A adjusts the influence of the mode 2 contribution in the
criterion. The limit 2 = 1 is the ‘‘ideally brittle’’ interface with initiation
occurring when G = Gy for all mode combinations. This limit coincides
with the classical surface energy criterion. When A = 0, crack advance cnly
depends on the mode 1 component. For any value of A, Gy is the pure
mode 1 toughness. The criterion can be cast ir- the form (2.37) where ihe
mixed mode toughness function is

My) = G[1 + (4 - Dsinfy]™" (2.40)
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Fi6. 10, A family of interface toughness functions and companson with data tor &
plexiglass -epoxy intertace (represented by the broken line).

The toughness is plotted as a function of y in Fig. 10 for various values of
/. Included in this figure is the data for the plexiglass/epoxy interface.
which is approximately represented by the choice ~ = 0.3. This particular
interface displays a toughness that is far removed from ideally brittle
behavior.

T ae family of criteria (2.39) was extended to include a mode 3 contribution
by Jensen er al. (1990). In a slightly different form, this family of criteria
has been used for some time to characterize interlaminar failure in fiber
reinforced composites (¢f. Kinloch, 1987). When # = 0, one can introduce
““‘components’’ of G according to

(G,.G,) = E;Y(KE, KD, (2.41)

such that G = G, + G,." Alternatively, for a crack in a homogeneous
orthotropic material, G, and G- can be defined using (2.16). The criterion
(2.39) can be rewritten as

(G,/G) + (G,/GS) = 1, (2.42)

where G5 = G;// has the interpretation as the pure mode 2 toughness.
Other phenomenological criteria have been proposed to characterize

mixed mode toughness data for interlaminate fracture (e.g., Kinloch, 1987).

Two alternatives to (2.40) are now given which have qualitative features

'The components can be regarded as the work of the normal and shear tractions on the
interface through their respective crach face displacements as the crack advances. This decom-
position does not exist when § = 0.
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Fic. 11, Alternative tamilies of interface toughness tunciions.

that may more realistically reproduce data trends for interfacial fracture:

I(y) = Gi{l + tan’[(1 — Ay} (2.43)
and
() = G{[1 + (1 — 2)tan’y). (2.44)

These are plotted in Fig. 11. Both coincide with (2.40) in the limit A = 0,
i.e., they reduce to a criterion based on a critical value of K, independent
of K,. Both are ideally brittle with 2 = 1. According to (2.43), the
toughness increases sharply as ¢ — 90° (mode 2), as opposed to (2.40),
which has the toughness leveling off as ¢ — 90°. Equation (2.44) models
the toughness as unbounded as v — 90° for all A < 1. While this feature
should not be taken literally, it did emerge in the simple model of mixed
mode interface toughness due to asperity contact of Evans and Hutchinson
(1989). Of the three formulas for I'(y), (2.44) most accurately reflects the
trends of that model.

All three of the interface toughness functions I'(y) are symmetric in . In
general, symmetry of interface toughness with respect 1o w should not be
expected. Some evidence that I'(y) is asymmetric for an epoxy/glass inter-
face will be presented in the next section.

4. Interface Toughness with § # 0

When f # 0, the notion of a mode 1 or a mode 2 crack tip field must be
defined precisely, and the possibility of contact of the crack faces within the
region dominated by the near tip K-fields must be considered. As noted by
Rice (1988), a generalized interpretation of the mode measure is the most
important complication raised by the oscillatory singularity, and the
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approach recommended here follows largely along the lines of one of his
proposals. First, a definition of a measure of the combination of modes 13
made that generalizes (2.34).

Let / be a reference length whose choice will be discussed later. Noting the
stress distribution (2.26b) on the interface from the A-field, define v as

Im(KI) N
= tan"!| ——— |, (2.45
v tan {Re(]\'l“')J ’

where A = KR, + iK, is the complex stress intensity factor. For a choice of
/ within the zone of dominance of the A-field, (2.45) i1s equivalent to

{cf. (2.26b)) ‘
v = tan“‘K"”) } (2.46)
Ga/r=1

Moreover, the definition reduces to (2.34) when 8 = 0, since /' = 1 when
¢ = 0. When ¢ # 0, a mode 1 crack is one with zero shear traction on the
interface a distance / ahead of the tip, and a mode 2 crack has zero normal
traction at that point. The measure of the proportion of ‘‘mode 2"’ 1o
““mode 1’ in the vicinity of the crack tip requires the specification of some
length guantity since the ratio of the shear traction to normal traction varies
(very slowly) with distance to the tip when 8 # 0.

The choice of reference length / is somewhat arbitrary, as will be made
clear in the following. It is useful to distinguish between a choice based on
an in-plane length L of the specimen geometry, such as crack length, and a
choice based on a material length scale, such as the size of the fracture
process zone or a plastic zone at fracture. The former is useful for discuss-
ing the mixed mode character of a bimaterial crack solution, independent of
material fracture behavior, while the latter is advantageous in interpreting
mixed mode fracture data, as will be discussed. When there is the need to
keep the two types of choices clearly distinct, the notation (w, /) will be used
for a choice based on the specimen geometry and (¢, /) will be reserved for
a material-based choice.

The solution for the complex stress intensity factor to anyv plane elasticity
problem for an interface crack will necessarily have the form

K = (applied stress) x FL'27*, (2.47)

where L is some in-plane length, such as crack length or uncracked ligament
length, and F is a complex-valued, dimensionless function of dimensionless
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groups of moduli, and in-plane length guantities. Equations (2.30) and (2.31)
are two examples. The term A/” in the definition of y will therefore always
involve a dimensionless combination such as (/7L = explie In(/ 'L)]. tor
example, the bimaterial double cantilever beam specimen (2.31) has

o= w*a, f)Y + einll h), (2.48)

which generalizes (2.36).

The freedom in the choice of / in the definition of w is a consequence of
the simple transformation rule from one choice to another. Let y, be
associated with /;, and w, with /». From the definition in (2.45) one can
readily show

w. =y, + elnfls/1). (2.49)

Thus, as noted by Rice (1988), it is a simple matter to transform from one
choice to another. In particular, toughness data can readily be transformed,
as will be discussed in the following.

Let / denote a length characterizing the size of the fracture process zone
or, perhaps, the typical size of the plastic zone at fracture, and let ¥ be asso-
ciated through (2.45). Since small-scale yielding or a small-scale fracture
process zone is assumed, / necessarily lies within the zone of dominance of
the K-field. Given the choice i, the criterion for interface cracking can again
be stated as (2.37), i.e.,

-

G =TI, !, (2.50)

where the implicit dependence of the toughness function on / has been
noted. In words, T'(¥, i) is the critical value of the energy release rate needed
to advance the crack in the interface in the presence of a combination of
tractions whose relative proportion is measured by . By (2.49), change in
one choice of length in the definition of w to another only involves a shift
of the w-origin of I according to

r(l,(/z, 12) == r(Wl + CIH(/Q/II), 1]), (2.51)

as uepicted in Fig. 12. When ¢ is small, the shift will generally be negligible
even for changes of / of several orders of magnitude. This is the case for the
plexiglass/epoxy interface (2.38). An illustration for which the g-effect is
not negligible in reporting interface toughness is discussed shortly.

In discussing the mixed mode character of a given elasticity solution, it is
generally convenient to identify / with an in-plane length of the geometry,
such as L in (2.47). For example, if for the double cantilever beam specimen
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Fic. 12. Procedure for shifting toughness function from one choice of reference length to
another.

one picks / = h, then by (2.48),
Y = w¥a, f), (2.52)

which is independent of the size of the specimen.' This is necessarily a
feature of any choice of / that scales with an in-plane length. By contrast,
for a choice / that is fixed at some microstructural length, § varies with
specimen size, e.g., for the double cantilever specimen,

¥ = w*(a, B) + €n(i/h). (2.53)

This reflects the fact that the ratio of g,; to 05, at a fixed distance r = [
ahead of the tip varies as the specimen size changes. Standard arguments
underlying the mechanics of fracture, based on Irwin’s notion of
autonomous crack tip behavior, require that T'(§,7) be independent of
specimen size (assuming, of course, that small scale processes are in effect),
while I'(y, /) will depend on specimen size if £ # 0 when / scales with
specimen size. This property, together with the interpretation of mixity in
(2.45) in the vicinity of the fracture process zone, favors the choice of a
material-based / for presenting toughness data.

Liechti and Chai (1990a,b) have developed a bimaterial interfacial
fracture specimen that is capable of generating the interface toughness func-
tion T over essentially the full range of w. A schematic of their plane strain
specimen is shown in the insert in Fig. 13. The in-plane length of the
specimen is long compared to the thickness # of each laver. The bottom

' The fact that / = # obviously lies outside the zone of dominance of the A-field is of no
conseqguence. The essential point is that any choice of / is acceptable as g as it is recorded
along with the result for &, and as long as one is cognizant of the transtormation rule.
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FiG. 13. Data of Liechti and Chai (1990a) for an epoxy (#1) glass(#2) interface: ¢, is based
on/, = 12.7mm and ¢, on { = 127 ym. The solid curves are ['(4,), where T is given by (2.44).

surface is rigidly held and the upper surface is attached to a rigid grip that
can impose a horizontal, U, and vertical, V, in-plane displacement. The
solution to the problem when the layers are infinitely long and the interface
crack is semi-infinite was used by Liechti and Chai to obtain the values of
K, and K, (and G and ) associated with the measured combinations of U
and V at which the crack propagated in the interface. For plane strain, the
solution is (see Section I11.C)

V2u,u b~V kel + iU

=, (2.54
O = B %, + u) Ty = v) + (@ — w2t 529

where w is a real quantity that depends on u,/u,, v,, and v, and

2(uy + 1) }1/2 5
= . (2.55
‘ {#nf(l = 2v3)/(1 = vy)] + u[(1 = 2v)/(1 — v))] (2.59)

Let y measure the relative proportion of U to ¢V applied to the specimen,
and define it by

y = tan"'[U/(cV)]. (2.56)
Then, with / as the reference length, (2.45) gives

w=y+w+ elni’h). (2.57)
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The data for T'(y, 7)in Fig. 13 was measured by Liechti and Chai for an
epoxy(#1)/glass(#2) interface with the following properties for the system:
E, = 2.07GPa, £, = 68.9GPa, v, = 0.37, v, = 0.20, and /& = 12.7 mm.
The plane strain Dundurs’ parameters and the oscillation index are

a = —0.935, B = —0.188, and e = 0.060. (2.58)

For this system w = 16° (see Section II1.C). Liechti and Chai took
I'=12.7mm in their definition of w, coinciding with the thickness 4 of
the lavers.

Liechti and Chai recorded plastic zones in the epoxy to be approximately
on the order of 1 um when ¢ = 0° and 140 um when ¢ = 90°. If instead of
{=12.7mm, 7/ is chosen to be two orders of magnitude smaller (i.e.,
[ = 127 um), the shift in the y-origin from (2.49) or (2.51) is —15.8°. This
choice seems somewhat more natural in terms of the interpretation given
earlier since now / lies well within the zone of dominance of the K-field and
has a microstructural identity. This choice also places the origin of the
w-axis (i.e., ‘“‘mode 1”’ for this choice of /) at the approximate minimum of
I" and roughly centers the data, as can be seen in Fig. 13. Nevertheless, some
asymmetry in I’ with respect to  still persists. Included in this figure is the
toughness function I'(y) from (2.44) for two choices of 4, with G} chosen
to coincide with the measured value at %, = 0. Apart from the asymmetry
in the data, a A-value between 0 and 0.5 would seem to give an approximate
characterization of the data over the range of § shown. Other important
aspects of the mixed mode fracture behavior of this system have been
discussed by Liechti and Chai (1990a). These include possibie correlation of
the strong increase in toughness with mode 2 with either fracture surface
roughness or plasticity, and the role of contact between crack faces when
the loading becomes dominantly mode 2.

When interpenetration of the crack faces is predicted on the basis of the
formulation for a traction-free line crack, the consequences of contact must
be taken into account in any application of the solution to fracture. The
bimaterial problem with £ # 0 is unusual in that interpenetration of the
faces always occurs according to (2.27). This feature of the interface crack
problem was noted in the earliest papers on the subject, and solutions to
specific problems posed with allowance for contact have been produced
(Comninou, 1977, and Comninou and Schmueser, 1979). Fortunately, under
most loadings likely to be of concern, the contact zone predicted by the
elasticity solution is tiny compared with relevant near tip physical features
such as the fracture process zone or the plastic zone. The larger the
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proportion of mode 2, the more likelv is contact of the crack faces to be
an issue.’

To see this, a rough estimate of the size of the contact zone is obtained.
The estimate is that of Rice (1988), as elaborated on by Wang and Suo
(1990). Here, however, emphasis is placed on a definition of ¢ in (2.45)
based on a microstructural scale length [. For r < I, it will be assumed that
the fracture process or other inelastic effects supercede linear elasticity.
Using the definition of ¢ in (2.45), one can readily show that the normal
crack face displacement in the near tip region from (2.27) is

5, = |6, + i6,] cos[¥ + €In(r/1) — tan™'(2¢)). (2.59)

Consider the condition for the crack to be open (J. > 0) for [<r<L/10.
The factor 1/10 is arbitrary, but the near tip fields should not be expected
to retain accuracy for r larger than some fraction of L. If contact occurs
outsiue the preceding range, it must be assessed using the full solution. If
€ > 0, the stated condition is met if

n n 1 L
——+2e<Py<-+26-¢cln{—=], 2.60
3 e < 3 £—-¢ n(l 5 I) (2.60)
where tan~'(2¢) has been approximated by 2¢ since |¢| = 0.175. Fore < 0,
there will be no contact over the specified region as long as

-3+2e—em<—1;> <P <+ (2.61)
2 2

The e-dependence of the above constraints is inconsequential for many
interf: ~= systems. For the epoxy/glass system (2.58), which has a relatively
large ¢-value, (2.60) becomes —83.1° < ¢ < 89.0° for L/l = 100 and
-83.1° < iy < 73.2° for L/l = 10*. The difference between the limits
obtained above and those derived by Rice (1988) and Wang and Suo (1990)
is due mainly to the use in the present work of the material-based definition
of y, rather than y defined in terms of a length L characterizing the
specimen. The combination of the contact due to nonzero ¢ and the contact
arising from fracture surface asperities has not been modeled. The inter-
action between these two effects acting in concert should be important for
mixed mode loadings near the limits listed above.

'Now the contact is not due to asperity roughness on the crack faces generated by the
fracture process that was discussed earlier. Here, the crack faces are imagined 10 be smooth
and *“just touching'’ in the unloaded state.
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~ #2

Fic. 14. Conventions for a crach kinking out of an interface.

5. Kinking Out of the Interface

The analysis of kinking parallels that was discussed in Section A for the
isotropic elastic solid, and the results presented in what follows are taken
from He and Hutchinson (1989a) and He er al. (1991). As depicted in
Fig. 14, a semi-infinite crack lies along the interface with its tip at the origin.
Prior to kinking (¢ = 0), the parent crack is loaded with a complex interface
stress intensity factor K = K, + iK, with mixity y defined by (2.45) relative
to some reference length /. For definiteness, y will be taken to be positive
with kinking down into material #2 as shown in Fig. 14. Negative -
loadings with upward kinking can be analyzed by exchanging the materials,
i.e., switching the signs on « and 8.

As in the analysis for the isotropic solid, the energy release rate G for
straight-ahead advance in the interface is compared with the energy release
rate G' for a crack with a segment of length a kinking at an angle Q to the
interface. The energy release rate G for advance in the interface is given by
(2.29). The conventional mode 1 and mode II stress intensity factors at the
tip of the kinked crack tip are related to K by

K, + Ky = cQ, o, B)Ka™ + d(Q, o, B)Ka ™" + B(Q, o, f)Ta'’?, (2.62)

where T is the nonsingular contribution to o, in material #2 at the parent
crack tip prior 1o kinking. The T-stress may arise from remote applied load
or it may be present as a residual stress. The functions ¢, d, and b are
complex-valued; ¢ and d are tabulated in He and Hutchinson (1989b), while
b is given in He et al. (1991).

The energy release rate at the kinked crack tip, G', is given by (2.5), and
the ratio of the two release rates has the form

G/G' = F(Q,w,n, «, B), (2.63)
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Fic. 15. Ratio of energy release rate for advance in the interface to the maximum energy
release rate for the kinked crack for various levels of elastic mismatch, all with £ = 0.

where n = T[a/(E,G)]'’? and
v =y + ein(a/l). (2.64)

The complete expression for F is given by He er al. (1991). The a-dependence
of this ratio appears through », and weakly through .

The ratio G/Gy,,, is plotted against v in Fig. 15 for various values of a,
in each case for # = 0 and n = 0. Here, G,,,, is the maximum of G' with
respect to kink angle Q for a given . As in the case of the homogeneous
isotropic kinking problem, there is very little difference between the kink
angle that maximizes G' and that which is associated with K;; = 0. The only
exception occurs when material 2 is very stiff compared with material 1
(¢ < —0.67). Then, there exists a range of y for which the maximum G'
occurs at small kink angles while the kink angle associated with K;; = 0 is
near 45° (He and Hutchinson, 1989a). With I'(y) denoting the toughness
function of the interface and I', denoting the mode I toughness of material
2, kinking will be favored over continued interface cracking if

G/GL. . < T(y)/T., (2.65)
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and conversely. Thus, the curves of G/G,,,, in Fig. 15 also give the
transition value of interface to substrate toughness, I'(y)/I., separating the
tendency for kinking over interface cracking.

The effect of # on the ratio in (2.63) 1s relatively weak, as discussed by He
and Hutchinson (1989%a). The dependence on a through ¢ in (2.63) can be
interpreted as a shift in the phase of the mode of loading on the interface
crack. The influence of n is given by He er a/l. (1991), and is qualitatively
similar to that shown in Fig. 2 for the isotropic case.

HI. Elasticity Solutions for Cracks in Multilayers

In studying cracks in multilayers, it is found that the crack driving force
for many situations is essentially independent of the crack size. This steady-
state concept and its implications are elucidated with two examples.
Heuristic conclusions thus drawn allow emphasis to be placed on various
steady-state problems. Several elasticity solutions for mixed mode cracks in
multilayers are gathered in this chapter. The geometries can be found in the
figures in this chapter. These solutions were obtained in recent years by
analytical and numerical methods, and have been used to calibrate fracture
specimens and assess technically representative structures. Details of appli-
cations will be given in the subsequent chapters. We will omit several
classical exact solutions of interface crack problems obtained in 1965 by
Erdogan, England, Rice and Sih. These solutions and some extensions have
been reviewed by Suo (1989, 1990a).

A. CONCEPT OF STEADY-STATE CRACKING

For applications to be discussed in the following chapters, the concept of
steady-state cracking results in a significant simplification. The purpose of
this section is to discuss the concept and its implications using two examples:
tunneling in adhesives and delamination in unidirectional composites. We
try to convey that the steady-state solutions developed in later sections,
although highly idealized, can be used to model real-world phenomena.

1. Tunneling in Adhesives

Consider residual stress cracks in adhesives as illustrated in Fig. 16. A
thin, brittle adhesive layer is bonded between two substrates. Biaxial
residual stresses usually develop in the adhesive layer during the bonding
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Fic. 16. A thin adhesive laver bonded between two substrates is under biaxial tensile
stress. A crack is tunneling through the layer. The substrate on the top is removed for better
visualization.

process. In glaze bonding, for example, the ceramic parts are coated with a
glass; the parts are placed in contact and heated above the melting tem-
perature of the glass, and then cooled down to the room temperature. For
such inorganic adhesives, a major source of the residual stress is thermal
expansion mismatch. The residual stress is tensile when the adhesive has
larger thermal expansion coefficient than the substrates, which causes
cracks to tunnel through the adhesive. Similar cracks are observed in hybrid
laminates consisting of alternate tough and brittle sheets, and i1n coatings or
reaction product layers between reinforcements and in matrices in brittle
composites. Cracks may penetrate into substrates if the latter are brittle.
Debonding is also possible at the intersection of the interfaces and cracks.

Illustrated in Fig. 16 is a crack, nucleated from a flaw, tunneling through
the layer. Substrate penetration and interface debonding are assumed not to
occur. Crack nucleation is a rather complicated process: A gas bubble
would behave differently from a crack-like defect in activating a tunnel.
However, as a crack grows long compared with layer thickness, the problem
becomes much better defined. A sready-state is reached: The tunnel front
maintains its shape as it advances, and the energy released per unit advance
no longer depends on the tunnel length, nor on the initial flaw geometry.
The steady-state problem is still three-dimensional in nature, since the shape
of the front should be determined so that the same mode | stress intensity
factor is reached at every point along the front. However, this stress intensity
factor itself can be calculated without knowing the shape of the front by
using a two-dimensional elasticity solution. This attractive possibility
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follows from the fact that ihe cnergy released per unit length of tunneling
equals the energy released to form a plane strain crack traversing the layer,
per unit width of crack For adhesive and substrate, with identical elastic
constants, the solution (Suo 1990b)

K, = \—,,750\?3 = 0.890\h  (a/h — o). (3.1)
As indicated, the result is valid for the steady-state, that is, when the tunnel
is long compared with the thickness of the adhesive layer.

Another limiting case with readily available exact solution is a penny-
shaped crack of diameter /4. The stress intensity factor along the entire
circular front is the same (so it may be thought of as an incipient tunnel),
having the value (Tada ¢ al. 1985)

K, =\2/novh = 0.80avh  (a’h = 1). (3.2)

Observe that the two results just cited are not very different, suggesting only
a mild dependence on a/k. The steady state is practically attained after the
tunnel length exceeds a few times adhesive thickness. If the penny-shaped
crack is representative of initial flaws, the critical stress needed for the
steady-state propagation is only about 10% below the stress to initiate
unstable growth from the flaw.

Several implications follow. The tunneling, once activated, would never
arrest until it meets another crack or other obstacles. Consequently, under
a biaxial stress, a connected tunnel network would emerge, surrounding
islands of intact adhesive materials; see Zdaniewski er al. (1987) for
micrographs. Another implication is that the transient dependence on a/h,
which can only be obtained from a complicated three-dimensional analysis,
would be unnecessary for most practical purposes. Instead, the steady-state
solution provides a conservative, vet still quite tight, design limit. For
example, given the substrate and adhesive materials (so the toughness and
mismatch stress are fixed), (3.1) would predict the thickest adhesive that can
be used with no tunneling cracks. More details of this problem are given in
Section VIII.

2. Delamination near a Surface Flaw

As a second example, consider the delamination near a surface notch in
a unidirectional composite; see the insert in Fig. 17. The incipient delamina-
tion is not well characterized for two reasons. First, the driving force
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Fic. 17. The insert shows a deiamination nucleated trom a surface noich and driver. by a
longitudinal tension. The normalized energy release rate is plotted against the elfective
delamination length A'"*a/h for several values of notch size h/H. The energy release rate
attains the steady-state as soon as /' *a/h > 1.5.

depends on the notch geometry. Secondly, composites usually exhibit R-
curve behavior: Fracture resistance increases as the crack extends. This can
be caused by bridging fibers or matrix ligaments in the wake. However,
once the delamination is sufficiently long, a steady state should be reached:
Both driving force and toughness become independer.. . " the delamination
length and initial flaw geometry. The following example establishes the
transient zone size for the driving force. The R-curve behavior will be
discussed in Section 1V.7D.

Figure 17 shows a delamination crack nucleated from a sharp notch and
driven bv an axial tension. Cimilar problems have been studied vy several
authors (e.g., O’Brien, 1984, Thouless ef al., 1989). The solution that
follows is taken from Suo er al. (1990b). The delamination is mixed mode.
The energy release rate takes the d'mensionless form

E,G , H
_“’»—A = ,‘<;~] 43; -—sp (3'3)
gh \ h h
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where £, = 1.b,, is the effective Young's modulus in the longitudinal
direction. » and p are orthotropy parameters, all defined 1in Section 1L.B.
The dimensionless function g depends on the indicated vancebles. Notice
that / and a4 affect the final results only through the product »° “a &,
as idenufied in the original paper using orthotropy rescaling. This detail
turns out to be imporiant in understanding the orthotropy effects, das will
be seen shortly. Figure 17 plots the solution obtained by finite elements,
with p = .

Observe that the energy release rate becomes independent of »' ¢ #
when the delamination is sufficiently long. An inspection ot Fig. 17 suggests
that the rransieni-zone size is given by 2' *a-h = 1.5, or

a'h = 1.5E /Ep' T, (3.4

where £1 = 1/b,, is the effective Young’s modulus transverse to the fiber
direction. For most polvmer co:..posites and woods, (£, /E;)' * = 2. Con-
sequently, a split longer than about three times the notch depth is subject to
a constant driving force. Equation (3.4) also reveals that elastic orthotropy
tends to prolong the transient zcne by a factor of (E; /E;)' #, as compared
with the isotropic counterpart. Finite element calculations (not shown here)
also indicate that the size of the transient zone is not significantiv affecied
by p within the practical range, so that (3.4) remains valid for general
orthoiropic materials.

An accurate approximation for the steady-state mixed mode energy
release rates at the delamination tip in Fig. 17 is (Suo 1990¢)

a*h . A,
[Gi, Gl = 7= (1 + 47 + 6n° + 3n7)[cos* w. sin’ w],
o (3.5)
w = 32.1° - 3%, n=~h/'H.

This steady-state solution G = G; + Gy, is indicated in Fig. 17.

In conclusion, the steadyv-state condition can usually be easily attained in
practice. These steady-state solutions are of unique significance considering
the variety of uncertainties associated with the transient state. Mathemati-
cally, the stecady-state concept aliows one to bypass some messy intermediate
calculations. Although an accurate estimate of the transient-zone size mayv
not be available for each steadyv-state solution described in the rest of the
section, we feel that, in corjunction with some heunstic judgment, these
solutions can be used 1o assess technical structures.
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M2 i

Fic. 18. Cross-section of an infinite laver with a half-plane crack. Axial forces and
moments, per unit width, are applied along the three edges.

B. Cracks IN LAYERS LOADED ALONG EDGES

The problems to be disussed in this section are sketched in Fig. 18. The
layer can be of one material or bimaterial, the material isotropic or ortho-
tropic, the crack along the interface or in the substrate. The relation is
sought between the applied loads and the mixed mode stress intensity
factors.

1. A Homogeneous, Isotropic Layer

Depicted in Fig. 18 is the cross-section of an infinite layer containing a
half-plane crack. The geometry is fully specified by 4 and H, the thicknesses
of the two separated arms. The layer is isotropic, homogeneous and linearly
elastic, and is subject, uniformly along the three edges, to axial forces and
moments per unit width P, and M;. The problem at various levels of
generality has been considered by several authors (Tada er al., 1985;
Williams, 1988; Suo and Hutchinson, 1989b; Schapery and Davidson,
1990). The results in the first two of these references contain conceptual
errors. The complete solution presented below is taken from Suo (1990c).

a. General Solution

The near-tip stresses are consistent with the mixed mode crack tip field,
with stress intensity factors A and K, to be determined. Far from the tip,
the three edges are characterized by the linear strain distributions for
elementary beams. The energy release rate equals the difference of the strain
energy per unit length per unit width stored in the edges far behind and far
ahead of the crack tip. Thus,
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where E is the effective Young's modulus defined in (2.4). This result may be
derived alternativelyv by using the J-integral (Rice. 1968; Cherepanoy, 1979).

The preceding energy accounting does not separate the opening and
shearing components. The partinion is simplified by finearity and dimen-
sionality, coupled with the Irwin relation (2.5). Consequently, the stress
intensity factors take the form

M
K, = Cos w + == sin{c) ~ 7).
N\ 2hU N2V
(3.7)
) P M
A, = sinw — == COS(w ~ }).
\ 20U N2V

All the preceding quantities except w are determined by elementary con-
siderations. Specifically, P and M are linear combinations of the applied
loads:

P=P1'C1P3“C2M3/h, M=M|—C31W3,

3.8)
1 6/n 1 (
c,=—r, C = ——, C;=——— n=h/H,
VI = an+1p’ 2 map 150

and the geometric factors are functions of #:

I sin y ,

—=12(1 + n'), —= = 6n(1 :

% (I+n) Ty n(l1 +n
(3.9)

i
— =1+ 4n + 61% + 313,
U n n n

Accurate determination of w, which depends only on #, is nontrivial.
The elasticity problem was solved rigorously (with the help of numerical
solutions of an integral equation). The extracted w varies slowly with 7 in
the entire range 0 < n =< 1, in accordance with an approximate formula

w = 52.1° - 3°0. (3.10)

This is a linear fit of the numerical solution, and the error is believed to be
within one percent.

b. A Mixed Mode Double Cantilever Beam

Several special cases are discussed here to illustrate the richness of the
solution. First consider a double cantilever beam as i Fig. 19. The
specimen i mode | if the crack lies on the mid-plane, but mixed mode if the
crack is off the mid-plane. This has been used recently to study mixed mode
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Fi1G. 19. The insert shows a double cantiliver beam with a crack off the mid-plane. The
mode mixity ¢ = tan~ (K ;/K}) is plotted against the offset y/b.

fracture of an adhesive layer by Thouless (1990b). On Fig. 19, the mode
mixity, v = tan"{(K;;/K;) = w + y — n/2, is plotted against the offset
v/b. Focus here is on the configurational stability of an homogeneous
specimen when the crack is slightly off the mid-plane as positioned, for
example, in the fabrication of the specimen. As indicated by the sign of K,
near y/b = 0, a crack off the mid-plane will be driven further away from
the mid-plane. The mid-plane crack is thus configurationally unstable.
Crack path stability will be further discussed in Section VIII.

¢. Exact Solutions for the Case H = h

Next consider the crack on the mid-plane and subjected to the general
edge loads. The crack path selection is seldom an issue in the composite
testing since cracks are usually confined to run along the fiber direction.
The exacr solution for w can be obtained for this case by considering a
special loading M, = M, = M and all others being zero. By symmetry,
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Fic. 20. Several exact solutions: (a) a pure mode | specimen (doubile cantilever beam);
{b) a pure mode Il specimen (end-loaded split); (c) a mixed mode specimen (four-point bend);
(d) a mixed mode specimen (crack-lap shear).

Ky = 0, which, substituted into (3.7), gives w = cos™'V(377) = 49.1°. The
full solution (3.7) can therefore be specialized to

Ky =VIPn Y 4 2V3Mn¥?, K, =2Ph" ',

L 1 (3.11)
P=P1“"2‘P3_4M;/'h, Mle—.—B_M]‘

Several useful edge loads are illustrated in Fig. 20. The mixed mode energy
release rates listed are valid for an orthotropic material layer with a prin-
cipal material axis coincident with the longitudinal direction. Geometries a
and b are pure mode | and pure mode 11, respectively. Geometries ¢ and d
are mixed mode.

d. Surface Layer Spalling

As the last example, consider a sub-surface crack in a semi-infinite plate
(n = 0) as illustrated in Fig. 21. The problem was solved by Thouless er al.
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e

Fig. 21. Spalling of a surface laver due 1o edge loads.
(1987) in a study of impact spalling of ice sheets. The complete solution is

1 9y e e
K, = 3[Ph-“cosw + 2V3Mh™ 7 sin w],
(3.12)
1 - .
Ky = TZ—[Ph_m sinw — 2V3Mh™*"* cos w],

where w = 52.07°. Contrary to one’s intuition, a significant amount of
mode 11 component is caused by pure bending. The solution will be used in
Section V to study decohesion of pre-tensioned films and thermal shock
spalling.

2. A Homogeneous, Orthotropic Layer

The same geometry in Fig. 18 was also analyzed for orthotropic solids
(Suo, 1990c). The layer lies in a principal material plane and the crack runs in
principal axis-1 of the solid. The energy release rate expression (3.6) remains
valid but the longitudinal tensile modulus £, should be used, namely,

1 [ P M 12

Gl = EE _—\/‘}7_(7(:05(0 + w—/_z-i.——v_sin(w + }’)- s (3]38)
1 [ P 1

G” = E—E‘-'L _msinw - WCOS(CU + }’)- N (313b)

where P, M, U, V, and y are given by (3.8) and (3.9). The quantity w
depends on n and p, but notr A. An integral equation method was used to
determine w, and the results indicate that the influence of p within its entire
practical range is below one percent, so that (3.10) is an excellent approxi-
mation for orthotropic materials. When the stress intensity factors are
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needed, the Irwin-tvpe relation appropriate for orthotropic materials (2.16)
mus! be used.

Notice that all the quantities in the brackets ot (3.13) except for « do not
depend on material parameters. Further, w may be approximated by (3.10).
which is also independent of any material parameters. Consequently, the
energy release rates of the two modes are essentially the same as their
isotropic counterparts, except that the longitudinal tensile modulus should
be used.

3. A Symmetric Tilt Strip

Imagine two identical lavers cut from an orthotropic solid at an angle o
to principal material axis-1 (Fig. 22). The thickness of the two lavers are
equal, designated as 4. The compliances s,,, $.1, S;2, and ¢, are referred 1o
the principal material axes. The two layer< are bonded to form a symmetric
tilt boundary, with a semi-infinite crack lving along the interface. The tilt
angle is ¢ and the tilt axis, or the crack front, is one of the principal axes of
the orthotropic solid. The general edge loads are applied.

The stress field around the crack tip is square root singular. The stress
intensity factors are defined such that, asymptotically, traction on the grain
boundary varies with the distance r from the crack tip according to

6, = 2"V ?Ky, 14 = QrnTVK,. (3.14)

The Irwin-type relation for a crack on the symmetric tilt grain boundary is

(Wang et al., 1990)
Gy = [by, by(1 + p)/2)'"*(A7 4 cos?o + 1V sin* @)K 2, .15
.15)
Gy = [by1by(1 + p)/2) 3 (A7 sin e + 1Y% cos?¢)K 3,

where the compliances are referred to the principal axes; see Section I1.B.

T

fe—te—
T

FiG. 22, Two identical grains of an orthotropic crystal form a symmetric till boundary,
with the prir z1pal crystal axis at an angle ¢ from the interface. The sample is under general
edge loads.
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Fi1G. 23. A bilaver with a half-plane interface crack. The neutral axis of the composite laver
is indicated.

The analytical solution is found for the problem. Expressed in energy
release rates, it is

Gy = 3%(P + 2M/h)Y/h, Gy = 4b% P2/h,
(3.16)

P=Pl—%PJ"%M3/h, M=Ml_%M3'

Here, b}, is the compliance in the x direction, which is related to the
principal compliances by

bt = (b1 b23) (A% cos*e + 2p cose sine + 172 sinte).  (3.17)

Notice that the energy release rates are identical to the corresponding homo-
geneous, isotropic results, except that the compliance must be reinterpreted.

4. An Interfacial Crack in a Bilayer

Figure 23 is a cross-section of an infinite bilayer with a half-plane crack
on the interface. Each layer is taken to be homogeneous, isotropic, and
linearly elastic. The uncracked interface is perfectly bonded with con-
tinuous displacements and tractions. The bilayer is loaded uniformly along
the three edges with forces and moments per unit width. The problem has
been studied by Suo and Hutchinson (1990), and the numerical solution has
been presented in the entire parameter range. The generality of the edge
loads allows the solution to be used to model a variety of delamination
processes. A special loading case (a splitting cantilever bilayer) is discussed
in Section I1.C.4. The solution will be used to calibrate interfacial fracture
specimens in Section I'V.B.1, and to assess decohesion of pre-tensioned thin
films in Section V.D. Focus here is ¢ the presentation of the elasticity
solution.
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Far ahead of the crack tip the bilaver may be regarded as a composite
beam. The neutral axis lies a distance #A above the botiom of the beam,
with A being

1+ 2%y + Zp°

3.18
2n(1 + L) ( )
where
E 1 h
r=2= +a’ n=-—. (3.19)
E 1 — o H

9

The composite layer is in a state of pure stretch combined with pure bending.
The only nonzero in-plane stress component is g, . The corresponding strain
is linear with the distance from the neutral axis, v, according to

6= - (D My (3.20
= "B\ T W) 29

The dimensionless cross-section 4 and moment of inertia 7 are

R ‘
A=l+):, 1=Z[< —l>—<A——l—)+l]+é< —l>+——}—3.
n 7 n 3 n n 3n

The energy release rate can be calculated in close form:

1 [P? M} 1 <P§ M; P} M?
2E,< 2E, ©-22)

G h i H H? Ah IR

The energy release rate specifies the magnitude of the near-tip singularity
but does not specify the mode mixity. The information is completed by the
complex stress intensity factor K, which, to be consistent with linearity,
dimensionality and the Irwin-type relation (2.29), takes the form

1 -aN? P M
K = h(—————) (-—--— ~ o™ —————)e"‘, 3.23
1 - g V2hU NETHTG 3.23)

where i = v—1, and P and M are linear combinations of the edge loads:
PzPl _-ClP.‘.—CZM}/ha M=M|’_C3M_1. (3.24)

The geometric factors are given by

p Y /1 1 pX
C'*Z' C2—7<;+5—A>, C3=*1'57, (3.29)
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FiG. 24. Calculated values of the function w{«, §. 77), which appeared in Eq. (3.23).

and by

1 1 sin y

—=1+XIn@d + 60+ 3nY), —=12(1 + Lnd), = 6X17(1 + n).
O n( n+3n%), o ( %) o (1 + n)

(3.26)
All these formulae are derived from the classical beam theory.

The angie w is a function of the Dundurs’ parameters «, # and relative
height #. This function was determined by solving the elasticity problem
numerically; the computed values are plotted in Fig. 24, and an extensive
tabulation can be found in Suo and Hutchinson (1990).

5. A Substrate Crack in a Bilayer

Depicted in Fig. 25 is an infinite bilayer with a semi-infinite crack parallel
to the interface. Each laver is isotropic and homogeneous. There are two
length ratios: &, = H,/hand £ = H/h. The problem was solved by Suo and
Hutchinson (1989b) in the context of substrate spalling of a residual stressed
thin film. The details of the application can be found in Section V.C.2, and
here we will focus on the solution of the elasticity problem.

Of the three edges, one is a homogeneous beam and the other two are
romposite beams. The positions of neutral axes for the two composite
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F1G. 25. A bilaver with a crack off the interface. The neutral axes for the two composite
lavers are indicated.

beams are given by

P +E+I _ G+ I5+ L

- , . = 3.27
a AE+ %) 28, + 1) 3:27)

The three beams may be described by a linear variation like (3.20). The

effective cross-section and moment of inertia of the two composite beams
are given by

A=E+ X, I=X[(A - &7 — (A~ &+ 1/3)
+ AE(A - &) + E3/3,
(3.28)
A, =¢ + L, 11=2[(A1"51)2"(A1"51)+ 1/3]
+ AS(A - &) + 513/3-

The energy release rate can be calculated in closed form:

1 [ PP M P? 12M7 P; M?
= — + g+ = + =3 3— — ——-|. (3.29)
2k, kA, KI, RE-&) K& - &) hA kI
The stress intensity factors are
K P cosw + M sin(fw + y)
= W + ———==SIn{w ,
' Vanu V20V y
(3.30)
K P sin cos(w + y)
= w - s(w ,
RN, NEYRIZ y
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where P and M are linedar combinations of edge loads:

P =Pi - C'P} - C:f‘r]}:l}, “1 = .’\’1] - C»‘,AK'I},

3.31)
A Ay . I, e
Ci==, G=FK-3-E-4a) C=7.
and the geometric factors are
1 1 A+ (&= EN2) 1 12
—!7:—-1»: z+12[1 z(',sx’) ], _1;:“+____r — .
U A, {-¢ € — &) b I (& -2¢&)

sin y Ay + (&~ E)/2
== 12 * 13
AUV (e Sl)

(3.32)

The angle w as a function of «, B, &, and &, is extracted from a numerical
solution, and is tabulated in Suo and Hutchinson (1989b).

C. A BiLayEr HEeLD BETWEEN Rigip GripPs

Figure 26 shows a bilayer with thickness & and H constrained between
grips. Each layer is taken to be isotropic. The constraint is assumed to be
perfectly rigid so that no separation nor sliding take place between the
bilayer and grips. Both layers may be subject to residual stress in the layer
direction, but it will not affect the singular field, and will therefore be
ignored. An interface crack is driven by the relative transiation, U and V,
of the two grips. The problem of a homogeneous layer with a crack running
on the mid-plane, i.e., # = H, has been solved analytically (Rice, 1968). A
gripped epoxy/glass bilayer has recently been used by Liechti and Chai
(1990b) to study mixed mode interfacial fracture resistance; see also Section
I1.C.4. The specimen calibration for a wide range of bimaterials are
described in the following.

The debonded layers far behind the crack tip are stress-free, while the
bonded layer far ahead is under a wniform strain state. An energetic
accounting shows that

V2<h H>" U2<h H>"
2 \E, E, 2 \py

where £ = 2u(1 ~ v)/(1 - 2v) for plane strain, and £ = 2u/(1 ~ v) for
plane stress.
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F16. 26. The insert shows a bilayer held between two rigid grips, and the crack is driven by
the relative translation of the two grips. The numerical solution of the angle w in Eq. (3.34)
is plotted.

The mode mixity may be controlled by the relative proportion of the two
grip translations. More precisely, the interfacial stress intensity factor is
given by

el Ex N V(h H\YV* U[(h H\Y
s pieyiw —_— = — —_ | — — . 34
k=h e(1~ﬁz> V2 E,+Ez B ul+uz -39

This is derived using (3.33) and the Irwin-type relation (2.29). All quantities
in the equation have been defined previously except for the angle w, which
is a function of u,/u,, vy, v,, and h/H. The problem contains displacement
boundary conditions, so that in principle the two Dundurs’ parameters are
insufficient to characterize the bimaterial. However, it has been confirmed
numerically (Beuth, 1991) that, once the Dundurs’ parameters are fixed, the
solution is almost independent of the third free variable. Finite element cal-
culations are done for the case H = h and the resuits are plotted in Fig. 26.
Linear interpolation is recommended for values between = 0 and § = «/4.
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D. SMmart-Scary FEATURES

Scales play a fundamental role in the development of :he fracrure
mechanics. asin any branch of continuum science. Classical examples are the
notions of small-scale vielding, homogenization of composites or damage
response. Here, we try 1o demonstrate, by a concrete example, hov inter-
face fracture mechanics may be applied at different scales. Consider two
blocks of substrates joined by a thin adhesive luver. One is asked to study
the toughness of the assemblyv. The problem may be tackled at two scales.

At a relativelv macroscopic level, one may think of this as an interface
fracture process between the two substrates, treating the adhesive as a small
scale feature. At such a level, the two substrates explicitly enter the scheme
of interface fracture, but the role of the adhesive, a: well as damage
processes in it, is contained in the macroscopically measured toughness.
This evaluation process has been used in the a-nesion comraunity for vears,
except that the two substrates are usually idertical, so that only the mixed
mon~ fracture mechanics of homogeneous materials need be invoked.
Obviously interface fracture mechanics is ideally suited to study the
adhesion of different substrates.

At a more microscopic level, one may study the cracking along the
interface between the adhesive and one of the substrates. Interface fracture
mechanics can be used provided the crack stays along the interface and
other damage processes are confined in a crack tip core region that is small
compared with the thickness of the adhesive. These requirements can be
realized if the interface is brittle enough. Mathematically, some well-
defined small-scale features may be analyzed using a boundary layer
approach. A few examples related to multilayers are collected in this
section. Applications will be discussed in Section VIII.

1. A Sub-interface Crack

Consider a crack running near an interface (Fig. 27). The distance
between the interface and crack, A, is small compared to all other in-plane
lengths. The overall geometry, viewed at a scale much larger than A, can be
regarded as an interface crack, so that the actual load and geometry can be
represented by the complex stress intensity factor K appropriate for an
interface crack. Near the crack tip, the stress field is that of a mixed mode
crack in a homogeneous material, parameterized by K, and A;;. Hutchinson
et al. (1987) provided a connection between the two sets of the stress
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L] ——

Fi. 27. A sub-interface crack. The spacing # is much smaller than the overall specimen
dimension. The remote and local stress intensity factors are connected by Eq. (3.36), and the
phase shift ¢y is plotted.

intensity factors, and used it to study the existence of mode I trajectory
paralleling the interface.
The local and global energy release rates are identical, namely

G = (K?+ Kk =1 'ﬂzu([z (3.35)
- Ez I 1w = E, . .
This relation gives the energy release rate at the crack tip, provided the
remote K is known. Observe that the magnitudes of the two sets of stress
intensity factors, K; + iK;; and K, are directly related by (3.35). They can
differ only by a phase shift, designated as ¢, so that

1 - ﬂz 1/2 o
K] + iK" = <l " a) Kh'ce'n, (3.36)

The phase shift ¢y, ranging from —15° to 5°, is a function of the Dundurs’
parameters. The numerical solution is plotted in Fig. 27, and a more
extensive tabulation can be found in the original paper.

2. An Interfacial Crack in a Sandwich

Any homogeneous fracture specimen may be converted to measure
interface toughness by sandwiching a thin layer of second material. The
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Fic. 28. An interface crack in a sandwich. The remote and local stress intensity factors are
connected by Eq. (3.38), and the phase shift w is plotted.

generic set-up is depicted in Fig. 28. An interlayer of material 2 is embedded
in a homogeneous body of material 1, with a pre-existing crack lying along
one of the interfaces (upper interface here). Each material is taken to
be isotropic and linearly elastic. A solution described in the following,
obtained by Suo and Hutchinson (1989a), provides the basis for a variety of
sandwich specimens; an example, a Brazil-nut sandwich, will be discussed in
Section IV.C.

The problem is asymptotic in that the reference homogeneous specimen is
infinite and the crack is semi-infinite, as is appropriate when the layer
thickness A is very small compared with all other in-plane length scales. The
crack tip field of the homogeneous problem (without the layer) is prescribed
as the far field in the asymptotic problem. Thus, the far field is character-
ized by K, and Ky;, induced by the loads on the reference homogeneous
specimen. The interface crack tip field is characterized by the (complex)
interfacial stress intensity factor K. A relation is developed in what follows
that connects these two sets of stress intensity factors, allowing conversion
of any homogeneous specimen to a sandwich without further calibration.

The global and local energy release rates are the same:

1
E,

1 -8
E,

G=— K+ K2 = K2 (3.37)
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Considerations similar to those of the previous subsection give

172
K= h“‘(l - ﬁ2> (K, + iKy)e™. (3.38)

From numerical calculations, the angle shift w, which is due exclusively to
the moduli dissimilarity, ranges between 5° to —15°, depending on « and £.
The solution is plotted in Fig. 28; other cases are tabulated in Suo and
Hutchinson (1989a).

3. Parallel Debond

When a sandwich layer is under substantial residual compression, debond
may take place along the two interfaces. The phenomenon was observed in
preparing Al,O;—SiC—Al,0, laminate (private communication with A. G.
Evans). The laminate was diffusion bonded at an elevated temperature, but
debonded into three layers in the cooi-down. Parallel cracks under uniaxial
loads have been observed in laminates with center notches or matrix cracks.
The solution obtained by Suo (1990b) is given in the following.

It can be shown with the Eshelby cut-and-paste technique that, as far as
the stress intensity is concerned, the residual compression is equivalent to a
mechanical load of layer pull-out. Depicted in Fig. 29 is a slightly general-
ized situation in which an opening load represented by K;° is included, in
addition to the pull-out stress o. It is envisioned that the pull-out stress itself

K™

Kf ' KN

K

Fi16.29. Parallel debond of a sandwich layer, driven by the pull-out stress ¢ and the remote
opening load K°.
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may not be high enough to trigger debonding, but the structure debonds
with an additional remote mode-I load.

To gain insight into this setup, we ignore the moduli difference in this
preliminary treatment. By an energetic argument, one obtains the energy
relcase rate at each tip under combined loads ¢ and K|°:

1 (K ok

Hence, the interfacial fracture energy can be inferred if one measures o and
the critical K;° that trigger the debond.

Recall the Irwin formula (2.5) is applicable for each crack tip. Comparing
the two energy release-rate expressions, and keeping the linearity of the
elasticity problem in mind, one obtains the local stress intensity factors

1. 1
K, = 7K cose + -z-a\/h'smqs,
(3.40)

Ky = -V!—_il(,‘"’ sin ¢ + %a\/i—:cos .
The angle ¢ has to be determined by solving the full elasticity problem. An
integral equation approach was used and the solution was found to be
¢ = 17.5°.

Consider the case when K;° = 0. The above solution indicates that the
pull-out stress induces a significant amount of crack face opening, along
with the predominant sliding. By contrast, residual tension (equivalent to a
push-in mechanical stress) induces a negative K|, suggesting that debonding
will be a pure mode-]1] sliding against friction. Therefore, parallel debond-
ing will more likely take place for adhesives in residual compression than in
tension, provided other conditions are the the same.

The solution can be generalized to orthotropic materials using the
concept of orthotropy rescaling. Suppose the entire material is orthotropic
and homogeneous. Two cracks run in the principal axis 1. Using orthotropy
rescaling, (3.40) becomes

3/8

A
K, = %K,‘"cosdx + ma\/ﬁsin o,
(3.41)

-1/4 i/8

Ky = «»—Tze-K,”sincb + %—J—Eo'ﬁcosqx
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TABLE 1|

o(p) (1x DEGREES) FOR PARALLet DEBOND

p ~0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
o 229 216 20.6 19.9 19.2 187 18.2 17.8
p 1 2 3 4 bt 6 7 8

o 17.5 i5.9 14.9 14.1 13.4 129 12.5 12.1

where n = [(1 + p)/2]""%. Now the phase shift ¢ depends on p. An integral
equation is solved numerically, and the results are listed in Table 1.

1V. Laminate Fracture Test

Interlaminar fracture resistance of multilayers is usually measured using
beam-type specimens. Fracture mode mixity, ranging from opening, mixed
mode, to shearing, can be controlled by the loading configuration. A
catalog of such specimens is presented, for application to both orthotropic
materials and bimaterials. Most of these specimens have been used by the
composite community for decades. Yet rigorous, general calibrations are
available only recently. Delamination resistance can be enhanced by a
variety of bridging mechanisms. A prevailing issue is that the bridging-zone
size is usually several times the lamina thickness, so that delamination resist-
ance is no longer a material property independent of specimen size and
geometry. The implications will be studied using the Dugdale model.

A. DELAMINATION BEAMS

Beam-type fracture specimens are most frequently used for composites,
adhesive joints, and other laminated materials. Small scale features such as
fiber/matrix inhomogeneity are typically not explicitly taken into account.
For example, homogenized elastic constants are used for composites. The
Irwin-Kies compliance calibration is still in use for lack of elasticity solu-
tions. Empirical calibrations obtained this way should be valid only for the
materials being tested, since they typically depend on elastic constants.
Finite element calibration has been used by many authors, and previous
literature on the subject may be found in a volume edited by Friedrich (1989).
Guided by an orthotropy rescaling concept, Suo (1990c) and Bao et al. (1990)
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have analyzed many commonly used specimens, using either integral
equations or finite elements. Included were notched bars loaded in various
configurations, delamination beams, and hybrid sandwiches. The work of
Suo (1990¢) has been summarized in Section II1.B.2, which is applicable
for unidiicctional composites under steady-state loading configurations.
Several other delamination beams analyzed by Bao er al. (1990) will be
described in the following.

1. Double Cantiler Beams

Illustrated in Fig. 30 is a double cantilever beam made of a unidirectional
composite with fibers along the beam axis. The specimen is pure mode I,
and energy release rate is

P 2
6= 1280 (1 4 vahrap, @.1)
h’E,
where P is force per unit width, 24 beam thickness, a crack length,
E, = 1/b,, is the effective Young’s modulus in fiber direction, and 4 and p
are dimensionless orthotropic parameters. These material constants are
defined in Section 11.B. The dimensionless factor Y is approximated by

Y(p) = 0.677 + 0.149(p — 1) — 0.013(p - 1)%. 4.2)

These formulae are valid for both plane stress and plane strain, for generally
orthotropic materials within the entire practical range, 1'"“a/h > 1 and
0 < p < §, and the error is within 1%. In particular, the preceding result is
valid for isotropic materials when p = 4 = 1.

This calibration is obtained using finite elements, together with several
analytic considerations. The first term in the bracket in (4.1) reproduces the
exact elasticity asymptote as a/h — oo, which may be obtained from the

TP
Cl), a . lh
————— Ll

Q
r

Fic. 30. A mode I delamination specimen (double cantilever beam (DCB)).
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Fig. 31. Two mode I delamination beams: (a) end-loaded split (ELS); (b} end-notched
flexure (ENF).

classical beam theory. The second term in the bracket is the first order
correction in A/a. £ . a consequence of the orthotropy rescaling, the
consistent correction, including the elastic constants A and p, is of the form
(4.1), where Y depends on p only; see Suo et al. (1990b).

2. End-Loaded Split and End-Notched Flexure

Figure 31 shows two designs of mode Il specimens. The calibration for
ELS is

9(Pa)y® -1/4 2
= / .
G zﬁ:(] + YA h/a)", 4.3)
Y(p) =0.206 + 0.078(p — 1) — 0.008(p — 1)~ 4.4)

All comments in the last subsection are valid here. To a high accuracy, the
calibration for ENF is identical to the preceding, as independently confirmed
by He and Evans (1990b).

3. Steady-State Mixed Mode Specimens

It is relatively difficult to design a mixed mode fracture specimen having
a fixed mode mixity as the crack grows, Two such specimens are depicted in
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Fig. 20. As the crack length exceeds about three times the notch depth 4,
both the driving force and mode mixity become essentially independent of
the delamination length. The calibrations are listed in the figure. It is not
necessary to measure crack size in a fracture test with such steady-state
specimens. Steady-state delamination beams of other edge load combina-
tions and/or of dissimilar arm thicknesses can be specialized from the
general solution in Section I11.B.2.

4. Other Mixed Mode Delamination Beams

Recall that stress intensity factors are linearly additive. One may use the
basic solutions presented in the preceding to obtain calibrations for other
specimens. Two examples are illustrated in Figs. 32 and 33. The specimen in
Fig. 32a is mixed mode, and can be solved by a superposition of DCB and
ELS. Note that both the magnitude of G and the mode mixity change as the
crack advances. The three-point bend in Fig. 33 is a superposition of the
four-point flexure specimen and the specimen in Fig. 32a.

Mixed Mode

ANNNNN

—— ]
4
v
P

I
T Pr2
F:=- DCB

l P2

l p/2

ELS

ANNSNNN

|

FiG. 32. The mixed mode end-notched split is the superposition of the DCB and ELS.
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F1G. 33. A superposition scheme for three-point shear.

B. INTERFACIAL FRACTURE SPECIMENS

As discussed in Section II.C, the fracture resistance of an interface
generally depends on the mode mixity. Thus, a toughness curve, I'(¥), must
be determined experimentally to fully characterize a given interface. Two
strategies have been used in practice to vary the mode mixity: multiloads or
multispecimens. The bilayer held between rigid grips discussed in Section
Ii1.C.4 and Section 111.C is an example of multiload specimens. In this
section, several other specimens are described.

1. Four-Point Flexure of a Bilayer

Figure 34 shows a specimen consisting of roughly the sam= amcunt of
opening and sliding. The specimen was first analyzed by Charalambides er
al. (1989), and is a special edge load combination of the general problem in
Section I11.B.4. Evans and coworkers at the University of California, Santa
Barbara have used this configuration to test bimaterial interfaces (Cao and
Evans, 1989), ceramic composite laminates (Sbaizero et al., 1990), metallic
adhesive joints (Reimanis and Evans, 1990), and thin films (Hu and Evans,
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Fi6. 34. The insert shows the UCSB four-point flexure of a bilayer. The mode mixity is
plotted.

1989). The setups have been collectively referred to as the UCSB four-point
flexure specimens.

When the crack exceeds a few times the thickness of the notched layer, A,
it can be considered as semi-infinite. The energy release rate is obtained in

closed form:
MEL L
G = m} <6 - '27) . 4.5)

where M = Pl is the moment per unit width, and the dimensionless moment
of inertia [ is given in (3.21). The loading phase y is defined by (2.45) with
h as the reference length, such that the stress intensity factor is

K = |K|h~* exp(iy). (4.6)

It is plotted in Fig. 34 with # = 0.

Charalambides et al. (1990) carried out a thorough analysis of several com-
plexities of the four-point flexure. One complication concerns the i.sidual
stress in bilavers induced in fabrication, which would affect both energy
release rate and loading phase. Observe that the complex stress intensity
factors due to the bending moment and residual stress can be linearly
superimposed. and both are the special cases of the general problem in
Section I11.B.4. The latter case will also be treated explicitly in Section V.D.

2. Edge-Notched Bend

A predominantly opening specimen is depicted in Fig. 35. Without loss of
generality, one can choose material 1 to be relatively rigid, so that the
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Fic. 35. Calibration. of the edge-notched bend of a bimaterial bar.

Dundurs parameter satisfies o > 0. With y defined by (2.45) with / = a, the
stress intensity factor is calibrated by

K = YTVaae"™. 4.7)

Here, T is the nominal bending stress, related to the moment per unit width
M by
T = 6M/W?, (4.8)

and Y is the real, positive calibration factor.

Both Y and y are dimensionless functions of «, £, and a/W. The finite
element results are plotted in Fig. 35 (O’Dowd er al., 1990). Observe that
the magnitude factor Y is nearly independent of elastic mismatch. The
loading phase y varies between 0° to 10°, depending on the elastic
mismatch.




Calibration is also available for the specimen shown in Fig. 36 (O’Dowd
et al., 1990). The loading phase is controlled by the offset s/ W’. The stress
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3. Edge-Noiched Shear

intensity factor is

K = YTvaa “e'v,

where y is again defined by (2.45) with / = a, and

_(A-B)P
T A+ BW

The dimensionless functions Y and y are plotted in Fig. 36.
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Fic. 36. Calibration of the edge-notched shear of a bimaterial bar.
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C. BraziL-NUT SANDWICHES

Any homogeneous specimen can be converted to an interfacial specimen
by sandwiching a thin laver of a second material between split halves of the
specimen. The general setup is analyzed in Section 111.D.2. As an example,
here we sandwich the Brazil nut with a laver of second material, and a crack
is left on one of the interfaces (Fig. 37). The specimen has been developed
to determine interfacial toughness by Wang and Suo (1990).

A remarkable feature common to all thin-laver sandwiches is that the
residual stress in the layer does not drive the crack, because the strain energy
stored in the layer due to residual stress is not released in the process of
cracking. Thus, one does not have 1o measure the residual stress to deter-
mine toughness. On the other hand, as discussed in Section VIII, excessive
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F1G. 37. Driving force and mode mixity of the Brazil-nut sandwich.
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residual stress may cause complications such as crack tunneling and
kinking, so it should be avoided.

1. Homogeneous Brazil Nuts

A homogeneous Brazil nut is a disk of radius @, with a center crack of
length 2/ (as illustrated in Fig. 37 but without the interlayer), which has
been used for mixed mode testing of brittle solids for years. The loading
phase is controlled by the compression angle 8: It is mode I when 6 = 0°,
and mode II when 8 = 25°. The stress intensity factors are

K, = fiPa"?, Ky = tfyPa™'?, (4.11)

where the plus sign is for tip 4, and minus for B. The nondimensional
calibration factors f; and fj; are functions of 8 and //a, and available in
fitting polynomial forms in Atkinson er al. (1982).

Using the Irwin relation (2.5), the energy release rate is

G = (f} + fH)P¥aks, 4.12)

where Eg is plane strain tensile modulus for the substrate. The loading
phases at tips A and B are

tan"}(K,/K;) = xtan~'(fyy/fp)» 4.13)

respectively. Equations (4.12) and (4.13) are plotted in Fig. 37.

2. Sandwiched Brazil Nuts

A sandwich is made by bonding two halves with a thin layer of a second
material. Nonsticking mask is supplied on the prospective crack surface
prior to bonding. When the layer thickness # is much smaller than other
in-plane macroscopic lengths, the energy release rate can still be calculated
from (4.12). This is true because of the conservation of the J-integral, and
becaus: the perturbation due to the thin layer is vanishingly small in the far
field.

The mode mirity ¥, defined by (2.45) with I as the reference length, is
shifted from that for the homogeneous specimen, in accordance with

¥ = ttan”'(fy/fy) + w + €1In(/h). (4.14)

Here, w, plotted in Fig. 28, is the shift due to elastic mismatch (3.38), and
the last term is the shift due to the oscillation index ¢, (2.49).
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D. DeLaMINATION R-CURVES

1. Large-Scale Bridging

Over the last decade, it has become increasingly evident that the
toughness of brittle materials can be enhanced by a variety of bridging
mechanisms. The mechanics language that describes this is resistance curve
behavior (R-curves): Toughness increases as crack grows. Attention here is
focussed on the delamination of unidirectional or laminated composites,
where cracks nominally propagate in planes parallel to fibers. A comparative
literature study shows that for both polymer and ceramic matrix com-
pcsites, bridging is usually due to intact fibers left behind the crack front,
while the crack switches from one fiber-matrix interface to another as it
propagates. Additional resistance for polymer matrix composites comes
from damage in the form of voids, craze, or micro-cracks. Three-
dimensional architecture of threading fibers may also give rise to substantial
fracture resistance.

As the prerequisite for these bridging mechanisms, significant damage
must accumulate ahead of the pre-cut tip as an additional energy dissipater.
In laminates, for example, the length over which fibers bridge the crack is
typically several times lamina thickness. The significance of an R-curve as
a material property becomes ambiguous, since the R-curve now depends on
specimen size and geometry. The intent of this section is to describe several
generic features unique to delamination R-curves, as identified in Suo er al.
(1990a); references on the subject can be found in the original paper.

2. Essential Features of Delamination R-curves

Consider a beam with a pre-cut, loaded at the edges by moments (Fig. 38).
The damage zone size L can be comparable to or larger than beam thickness
h, but the beam and pre-cut are much longer, so that the geometry is fully

[ 2h

Fic. 38. A mode I delamination beam, with a damage zone as an additional energy
dissipater. The geometry is specified by L/hA.
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FiG. 39. Two generic features of delamination R-curves. The plateau G, is independent of
the beam thickness 4. The steady-state damage zone L, size increases with A.

characterized by the ratio L/A. The material is assumed to be elastically
isotropic and homogeneous, and plane strain conditions prevail. The
nominal, or global, energy release rate is defined as the J-integral over the
external boundary as given by Rice (1968):

G = CM?, C = 12(1 - v3/ER*. 4.15)

Here, M is the applied moment per unit width, C the beam compliance, 2A
the thickness, £ the Young’s modulus, and v the Poisson’s ratio. The
specimen has a steady-state calibration: The global energy release rate does
not depend on crack size, nor does it depend on any information of the
damage zone (size, constitutive law, etc.).

Phenomenological delamination R-curve behaviors are shown schemati-
cally in Fig. 39. First, focus on a R-curve measured using a beam of a given
thickness, say, A, in the figure. The specimen can sustain the increasing
moment, without appreciable damage at the pre-cut front, up to a critical
point corresponding to G,. Subsequently, the damage zone size L increases
with the applied moment, leading to an increasing curve of resistance Gy .
The damage zone may attain a steady-state: It maintains a self-similar
opening profile and a constant length L, , translating in the beam, leaving
behind the crack faces free of traction. Correspondingly, a plateau G,
would appear on the R-curve.

To proceed further, the Dugdale (1960) model is invoked, which, in its
generalized form, simulates the homogenized damage reponse with an array
of continuously distributed, nonlinear springs. Specifically, at each point in
the damage strip, the closure traction ¢ depends locally on the separation &
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according to
o = ag(d). (4.16)

The functional form is related to the nature of damage, but is assumed to
be identical for every point in the damage strip, and independent of the
specimen geometry. A maximum separation J, is specified, bevond which
the closure traction vanishes. The spring laws may be measured or modeled
using simplified systems. They may also be inferred from experimental
R-curves, as will be discussed.

For an arbitrary spring law, the following energy balance is due to the
J-integral conservation (Rice, 1968):

;‘6
G=Gy,+ | a(d)dd, 4.17)
Jo

where &, referred to as the end-opening of the damage zone, is the separa-
tion at the pre-cut tip. Here and later, we will not distinguish the driving
force G and the resistance Gg, as they can be judged from the context. The
two energy release rates G and G, will be referred to as global and local,
respectively. The global energy release rate represents the supplied energy,
which is related to the applied moment via (4.15); the local one is the energy
dissipated at the damage front. The difference given by (4.17) is the energy
to create the damage. '

The steady-state resistance G, is attained when the end-opening reaches
the critical separation, § = J,. Thus, from (4.17), G,, equals the sum of G,
and the area under the spring law. The physical significance is that the
plateau G,, does not depend on the beam thickness, and is therefore a
property for a given composite laminate. However, it is not yet clear how
long the damage strip will be before the steady state is attained. The steady-
state damage-zone size L indicates the ‘‘quality’’ of a bridging mechanism:
Toughness gained from too long a damage zone may not be useful in
practice. Qualitatively, a thicker, stiffer, beam is more constrained for
deflection, and thus exhibits larger L,,. These essential features of the
delamination R-curves are indicated in Fig. 39.

Equation (4.17) suggests a way to determine the damage response. By
continuously measuring the end-opening &, and by using the experimentally
determined R-curve, the spring law can be inferred by differentiating (4.17):

a(8) = 8GR/34. (4.18)

The intrinsic resistance G, is assumed to be independent of the damage
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accumulation. This simple method, which bypasses the complexities of
large-scale bridging, is one of the advantages of specimens with steadv-state
calibrations. Large-scale bridging may be used as an experimental probe to
study localized (planar) damage response such as polymer craze and inter-
face separation, as uniform separation over a sample may be difficult 1o
accomplish in reality because of the instabilities triggered by inhomogeneities
or edge effects.

3. Rigid Plastic Damage Response

To gain some quantitative feel, consider a two-parameter damage
response: The closure traction is g, when J < J,, and vanishes when
J > J,. The steady-state toughness is

Gss = Go + 0'050. (4.}9)
The end-opening and crack tip stress intensity factor are given by
2
8 = al*\CG ~ ‘%L‘Cao, (4.20a)
VG = VG, + g\/ELzoo, (4.20b)

where the dimensionless number a depends on L/4 only, and the finite
element results are listed in Table 2.

The R-curve defined by Eq. (4.20b) is plotted on Fig. 40 in a dimension-
less form. The plateau G,, in (4.19) should be a horizontal line independent
of h and L (not shown in the figure). From material characterization point
of view, an inverse problem is of much more interest: how to infer the
model parameters from a given experimental R-curve. The quantities G,,
G,,, and L, can usually be read off from the R-curve. Using these, the
model parameters g, and J, can be inferred from (4.20).

A family of damage responses including softening and hardening have
been analyzed in Suo er al. (1990a). The effect of mode mixity has also been
discussed. A parallel experimental investigation has been carried out by

TABLE 2
a(L/h)

L/h 0.5 1.0 1.5 2.0 3.0 3.5 4.0 10.0 o
a 4.89 2.60 2.01 1.74 1.58 1.48 1.35 1.14 1.00
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Fic. 40. Dimensionless R-curves predicted using the rigid plastic damage response
(mode I).

Spearing and Evans (1990) with a unidirectional ceramic composite. The
experimental data and the model show very similar behavior, suggesting that
the model incorporates the controlling features of the toughening mechanism.

V. Cracking of Pre-tensioned Films

Thin films of metals, ceramics and polymers, are typically subject to
appreciable residual stress, which for ceramic systems can be on the order
of a giga-pascal. Such stress can cause cracking of the films. Films under
residual tension and compression will be considered in this and the next
sections, respectively. In this section, commonly observed fracture patterns
in pre-tensioned films are first reviewed, together with a discussion of the
governing parameters. These crack patterns are then analyzed in subsequent
subsections, with cracking in films, substrates, and along interfaces treated
independently. The values of a nondimensional driving force Z will be
documented to assist the practitioners of the field. The last subsection
presents a speculative analysis of thermal shock spalling.
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Fic. 41. A pre-tensioned film is deposited on a substrate.

A. CONTROLLING QUANTITIES AND FALLURE MODES

Illustrated in Fig. 41 is a film of thickness /# on a substrate. Both materials
are taken to be isotropic and linearly elastic, with elastic moduli and
thermal expansion coefficients (Ey, v, af) and (E,, v,, «;), respectively.
Elasticity mismatch may be characterized by the two Dundurs parameters o
and g defined in (2.21); « > 0 when film is stiffer than substrate. A crack
will grow as the driving force G attains the fracture resistances I3, I, I;,
depending on whether the crack is propagating in the film, substrate, or
along the interface. The mode I fracture resistance is usually appropriate
for films and substrates, but mixed mode resistance must be used for
interfaces.

1. Driving Force Number and Critical Film Thickness

To help visualize the cracking progression, the residual stress is assumed
to be due entirely to thermal mismatch. However, with proper interpreta-
tion, most of our results would be valid for stress due to other sources. The
film-substrate is stress-free at a high temperature 7,. Upon cooling to the
room temperature 7;, the contraction strains in the film and substrate, were
they unbonded, would differ by (a; ~ a (7T, — T;). A biaxial misfit stress is
defined accordingly:

6 = (ar = a{(To — THEV/(1 ~ v). (.1

Notice ¢ > 0 when a; > a. This stress is large: Typically, Ea = 1 MPa/K
for most materials. For example, the stress would be of order 1 GPa if the
temperature drops 1000 K (this is common in processing ceramic systems).
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FiG. 42. An Eshelby-type superposition to treat a residually stressed film decohering from
a substrate.

The thermal stress field can be evaluated by an Eshelby-type superposition.
As an example, consider a thin film decohering from a substrate, driven by
a biaxial misfit strain (Fig. 42). Problem (a) is trivial: the misfit strain is
negated by a mechanical strain corresponding to the tensile stress o; the film
is under a uniform biaxial stress, and the substrate is stress-free. In problem
(b), a pressure of magnitude o is applied on the edge of the film, but no
misfit strain is present. The superposition recovers the original problem,
with misfit strain but without edge load. Since no stress singularity is
present in (a), the crack driving force is entirely due to (b). The latter is a
standard elasticity problem, which requires numerical analysis.

A unifying dimensionless number Z is defined such that the energy release
rate for a crack is

G = Za’h/E;. (5.2)

Note that the elastic strain energy stored in a unit area of the film is
(1 - vf)ozh/Ef. The number Z is a dimensionless driving force, or order
unity, depending on the cracking pattern and elastic mismatch. The prac-
tical significance of this dimensionless number was first documented by
Evans et al. (1988). Common cracking patterns are sketched in Fig. 43,
together with their Z-values, where the film-substrate system is taken to be
elastically homogeneous, and the substrate semi-infinite.

Equation (5.2) provides a design limit. Given the mechanical properties
and misfit stress, a specific cracking pattern is inhibited if the film is thinner
than a critical thickness, given by

h. = TE/Zo?, (5.3)

where I is the relevant fracture resistance. The following example illustrates
a routine application using the information gathered in this section.
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Cracking Patterns G = ZG2h/E;

Surface Crack

Z = 3.951

Channeling
Z=1.976

r —F ) Substrate Damage
5 5 Z = 3.951
Q: 3}
Spalling
5 $ Z=0.343
S Debond
K 1.028 (initiation)
Z=

0.5 (steady - state)

Fic. 43. Commonly observed cracking patterns. The dimensionless driving force for each
pattern is listed, assuming that the film-substrate is elastically homogeneous, and the sybstrate
is infinitely thick.
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Consider channeling cracks in a glass film coated on a thick SiO, substrate.
Suppose I; = 7J/m?, E; = 70 GPa, ¢ = 50 MPa. One reads from Fig. 43
that Z = 1.976, which is appropriate since glass and SiO, have similar elastic
moduli. The critical film thickness computed from (5.3) is 4. = 100 ym.
The channel network is not anticipated if the film is thinner than 100 um.

2. Cracking Patterns

Let us go through Fig. 43 to define the various cracking modes. A surface
crack is nucleated from a flaw, and arrested by the interface. Yet the stress
is not high enough for the crack to channel through the film. Since flaws are
necessarily isolated, one would see stabilized, unconnected slits. The driving
force available for surface cracks is high, as indicated by the large value of
Z. Isolated cracks are detrimental for some applications, such as corrosion
protection coatings, but tolerable for others.

The channeling process is unstable: Once activated, it would never arrest
until it encounters another channel or an edge. Consequently, a connected
channel network would emerge, surrounding islands of the intact film. Such
cracking may not be acceptable for most applications, but, for example, is
common in glaze on fine pottery, and in pavement of roads.

Cracks in a film can propagate further to cause substrate damage. This
Z-value is the largest on the list. Such a crack may be stabilized at a certain
depth, since the misfit stress is localized in the film. However, the crack may
divert to run parallel to the interface, leading to the next cracking pattern.

Substrate spalling is an intriguing phenomenon: The crack selects a path
at a certain depth parallel to the interface, governed by K; = 0. This is not
a localized failure pattern in that extensive flakes can be spalled off.
Fortunately, the Z-value for spalling is quite low. If a small amount of
substrate damage is acceptable, one gains substantial flexibility in design.

Debonding may initiate from edge defects or channel bottoms. The latter
can be stable: The driving force for initiation is higher than that for the long
debond. This fact is exploited to introduce pre-cracks for certain types of
fracture specimens, such as the UCSB four-point flexure specimen.

In the following sections, these failure modes will be examined in some
detail. Emphasis is placed on the relevant elasticity problems that lead to
estimates of the driving force number Z. Experimental efforts will be cited
in passing. The writers hope this catalog will be used critically by experi-
mentalists in various disciplines, thereby allowing the catalog to be
validated or modified.
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B. CRACKING IN FILMS

Imagine a process with increasing tensile stress in the film, for example,
the cooling process. As illustrated in Fig. 43, a surface flaw is activated by
the tensile stress, grows towards the interface, and then arrests if the
substrate and interface are tough. With further stress increase, the crack
may channel through the film. The two stages will be treated separately in
the following.

1. Surface Cracks

We model the situation by a plane strain crack; see the insert in Fig. 45.
This is appropriate for an initial surface flaw of length several times A, but
may not be valid for an equiaxial flaw. The latter is studied by He and
Evans (1990a) but is omitted here. The plane strain problem has been solved
by Gecit (1979) and Beuth (1990). The following paragraph is a digression
to a few mathematical considerations that capture the main features of the
solution, and which may be skipped without discontinuity in the content.

The dimensionless stress intensity factor K/oVh depends only on the
relative crack depth a/h and Dundurs’ parameters o and 8. For small a/h,
regardless of the elastic mismatch, the stress intensity factor merges to that
of an edge crack in a semi-infinite space, i.e., K — 1. 1215Vnac asa/h = 0.
Asymptotic behavior for another limiting case, a/h — 1, can be obtained by
invoking the Zak-Williams singularity: the stress singularity for a crack per-
pendicular to, and with the tip on, the interface. Instead of the square root
singularity, the stresses near such a crack tip behave like o;; ~ Kr=*f,;(9),
where (r, 8) is the polar coordinate centered at the tip, and the f; are dimen-
sionless angular distributions. The scaling factor K plays a part analogous
to the regular stress intensity factor, but having different dimensions:
[stress][length]’. The singularity exponent s (0 < s < 1) depends on elastic
mismatch, and is the root to

a-A ; , a- B?

cos(sm) — 2'1"'_—5(1 -5y + = Bz

The numerical solution of s is plotted in Fig. 44. For a crack that penetrates
the film, K ~ gh®, with the pre-factor dependent on « and £ only. As
a’/h — 1 but with the crack tip still within the film, the stress field away
from the small ligament (2 — @) would not feel such a detail, and behaves
as if the crack tip were just on the interface, governed by K. Dimensional
considerations require the stress intensity factor K to be related to the far

= 0. (5.4)
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Fic. 44. (a) Zak-Williams singularity. (b) A curve fitting parameter.
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Fic. 45. Driving force available for an edge crack at various depths a/h.

field K according to K ~ K(h — a)'/*~*. Combination of the preceding
gives K/aVh ~ (1 — a/h)"*"* as a — h.
Motivated by these considerations, Beuth fitted his numerical solution
with
K/ovh = 1.1215Vn(a/m"V¥(1 - a/WV?*7(1 + Aa/h), (5.5)

where 4 is taken to be independent of a/A, and is chosen such that the
formula agrees with the full numerical solution at a/h = 0.98; the results
are plotted in Fig. 44b. The error of (5.5) is wiihin a few percent for
intermediate a/h. Equation (5.5) is plotted in Fig. 45 in terms of the dimen-
sionless energy release rate. The energy rsiease rate starts from zero for
shallow flaws. As the crack approaches the interface, it drops to zero for
relatively compliant films (o« < 0), but diverges to infinity for stiffer films
(ax > 0).

One needs a priori knowledge of flaw size to predict a failure stress or the
maximum tolerable film thickness. In practice, a plausible flaw depth may
be assumed according to the ‘‘quality”’ of the film. Taking, say, a/k = 0.8,
one can obtain the nondimensional driving force Z from Fig. 45 for a
known elastic mismatch. The flaws will not be activated if the dimensionless
fracture resistance satisfies I;E/a%h > Z.
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Observe that for relatively compliant films, the driving force attains a
maximum at an intermediate depth. The practical significance is that no
flaws, regardless of initial depth, can be activated, provided the dimen-
sionless resistance I F;/a’h is greater than the maximum. Such a
maximum, depending on the elastic mismatch « and g, provides a fail-safe
bound for relatively compliant films.

2. Cracks Channeling through a Film

Figure 46 shows a crack channeling through the film. Complications such
as substrate penetration, interface debond, and channel interaction are
assumed not to occur for the time being. At each instant of the growth, the
hannel front self-adjusts to a curved shape, such that energy release rate at
every point on the front is the same. The elasticity problem is three-
dimensional in nature, and an accurate solution would require iteration of
the front shape. After the length exceeds a few times the film thickness, the
channel asymptotically approaches a steady-state: the entire front maintains
its shape as it advances; so does §(z), the cross-section profile in the wake,
which attains the shape of a plane strain through-crack. The steady-state
cracking is analogous to that discussed in Section II1.A.1.
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F1G. 46. The insert shows a crack channeling across the film, driven by the tensile stress in
the film. The available energy ai the channel front is plotied for various elastic mismatch.
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In the steady state, the energy release rate at the channel front can be
evaluated using two plane problems—that is, by subtracting the strain
energy stored in a unit slice far behind of the front, from that far ahead.
The calculation does not require the knowledge of the front shape.
Alternative formulae have been developed with this idea. One is

"h

G, = (2)o(z) dz. (5.6)
[¢]

2h |
Two plane problems are involved: the stress distribution on the prospective
crack plane before cracking, 6(z), which, for the present situation, equals
. .niform misfit stress g, and the displacement profile for a plane strain
crack, 6(z). This is particularly convenient for numerical computation.

A second formula is
l h
Gy = —j G(a) da, 5.7
h jo

where G(a) is the energy release rate of a plane strain crack of depth ¢ in
Fig. 45. A mathematical interpretation is that G, is the average of energy
release rates for through-cracks at various depths. Both formulae are valid
for films and substrates with dissimilar elastic moduli.

As an example, suppose the film-substrate is elastically homogeneous,
and the substrate occupies a semi-infinite space. The corresponding plane
strain problem is an edge crack in a half plane, with energy release rate
G(a) = 3.9520%a/E (Tada et al., 1985). The integral (5.7) gives G =
1.97602h/E. This pre-factor is listed in Fig. 43.

Beuth (1990) carried out an analysis of a thin film on a semi-infinite
substrate with dissimilar elastic moduli. The result is reproduced in Fig. 46.
If the dimensionless toughness I;E/c2h is below the curve, a channel
network is expected. Observe that a compliant substrate (« > 0) provides
less constraint, inducing higher driving force for channeling.

The channeling cracks were studied analytically by Gille (1985) using the
numerical solutions available at that time, and subsequently by Hu and Evans
(1988) with a combination of calculations and experiments. The concept has
been extended as a fail-safe bound for cracking in multilayers (Suo, 1990b; Ho
and Suo, 1990; Ye and Suo, 1990; Beuth, 1990). Applications include thin
films, reaction product layers, adhesive joints, and hybrid laminates.

3. Multiple Channeling

The preceding technique can be extended to study interaction among
channels. Suppose the biaxial stress is biased so that parallel channels
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Fic. 47. Interaction of multiple channels.

develop in one direction; see the inserts in Fig. 47. For simplicity, attention
is restricted to an elastically homogeneous system with a semi-infinite
substrate.

Consider a periodic set of edge cracks of depth a, spacing L, and subject
to an opening stress o. The energy release rate at each crack tip, G(a), is
found in Tada et al. (1985) in a graphic form, which is then fitted by a
polynomial. Based on this information, energetic accounting gives the
driving force for cracks channeling in the film.

The strain energy, per crack, gained in creating a set of cracks of depth A is

h
U= § G(a)da = fa*h*/E, (5.8)
]

where the dimensioniess factor f depends on the crack density A/L. The
results obtained by a numerical integration are plotted in Fig. 47. If these
cracks are equally extended in the channeling direction, the energy release
rate at each front is G,, = U/h = fo*h/E. Thus, f is the dimensionless
driving force for this situation. Thouless (1990a) has employed this solution
in his discussion of crack spacing in thin films.

Next, consider the situation in Fig. 47 where, at a certain stage of loading,
the cracks of spacing 2L have already channeled across the film, and the
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tensile stress in the film has therefore been partially relieved. With further
increase of the loading, a new set of cracks are nucleated and grow half-way
between the existing channels. The energy release rate at the front of the
growing cracks should be computed from

Gy = QU, — Uy)/h = [2f(h/L) - f(h/2L))c*h/E. (5.9)

This is derived from the strain energy difference far behind and far ahead
of the channeling fronts.

The result is also plotted in Fig. 47. Given the mechanical properiies and
with the identification G, = I}, the plot may be viewed as a relation
between the stress level and the channel density. Notice we have assumed
that new cracks can always be readily nucleated half-way between existing
channels. This might overestimate the crack density for a given stress level.
An analysis with aspects similar to the preceding has also been carried out
independently by Delannay and Warren (1991).

C. SUBSTRATE CRACKING

Substrate damage may originate from edges or existing channel cracks in
the film. The two substrate cracking patterns in Fig. 43 are studied in this
section. Observe that the Z-values for the two patterns differ by an order of
magnitude,

1. Substrate Damage Caused by Cracks in Films

Suppose the channel cracks in the film have developed at some stage
during the cooling but have not yet grown into the substrate, either because
the substrate is much tougher or because sufficiently large substrate surface
defects are not readily available. The issue is whether these cracks would
propagate into the substrate upon further cooling. The problem has been
studied by Ye and Suo (1990), and the main results are summarized here.

The driving force for a plane strain crack into a substrate was analyzed
using finite elements, and the results are plotted in Fig. 48. Observe that the
driving force decays for deep cracks, implying stable propagation. For
relative compliant films (« < 0), the driving force starts from zero at the
interface, and attains a maximum at very small depths. It is difficult for
finite elements to resolve these details, so the trend is sketched by dashed
lines.
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H/h = 40

F1G. 48. [Energy release rate for a plane strain crack with the tip in the substrate.

The plane strain model is not quite correct, since cracks must be re-
nucleated, in a three-dimensional fashion, from a surface flaw on substrate.
The insert of Fig. 49 shows a crack growing laterally under an existing
channel in the film. The crack arrests at a certain depth because of the decay
of the available driving force. The energy release rate at the growing front

GuE! 4
o2h

L S B G T NN BN S SN S SN S 2 NN M R NN N BN S A g 2

PO W W0 W N SN W W W (N0 WY WK YO YN VAK WX WU Y WO 5 WE WO WY 1

-

--

FiG. 49. Energy release rate for a crack propagating under a channel in the film.
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may be computed from

a
G(a')da'. (5.10)

G, = ——
¥ oa-h}y

Again, this is derived from energy accounting. The integral is evaluated
using the preceding plane strain results, and the results are summarized in
Fig. 49. The plot may be used as a damage tolerance map: Given a damage
tolerance a/h, one can read the design number Z. Take the curve for
a’h = 1.2 as an example. Provided the dimensionless substrate toughness
I,E;/ha® is above the curve, no channel with depth a/h > 1.2 is antici-
pated. This holds true even if the initial flaws are deeper than 1.2, as long
as they are not channels themselves. Observe that the elastic mismatch plays
a significant role. A relatively compliant substrate would provide less
constraint, leading to larger driving force.

The so-called T-stress in (2.1) has also been computed by Ye and Suo and
is found to be positive, unless the film is much stiffer than the substrate and
the crack depth is small. As shown by Cotterell and Rice (1980), a positive
T-stress results in a tendency for a straight mode I crack to veer off to one
side or the other. Further discussion of crack path stability in a related
context is given in Section VIII.C. Here, we simply note that the substrate
crack will have a strong tendency to branch into a path parallel to the
interface, a cracking pattern to be discussed next.

2. Spalling of Substrates

Cracks, originating from either defects in the film or at the edge, have a
strong tendency to divert into the substrate, should the latter be brittle, and
follow a trajectory parallel to the interface; see Fig. 43. The key insight was
provided by Thouless er al. (1987) in a coordinated experimental and
theoretical investigation. Their initial intent was to model the impact of ice
sheets on offshore structures. The experiments were conducted with PMMA
and glass plates, loaded on the edges. Spalling cracks were found to follow
a trajectory parallel to the surface, with depth governed by the criterion
Ky; = 0. (See also Thouless and Evans, 1990.)

These authors remarked to the effect that this mechanism would operate
in the edge spalling of pre-tensioned films, previously observed by Cannon
et al. (1986). As schematically shown in Fig. 43, the crack initiates at the
edge, extends along the interface for typically about two times film
thickness, then kinks into the substrate, and finally runs parallel to the
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interface at a depth of a few times the film thickness. In this case, the under-
lying mechanics is the same for giant ice sheets as for micro-electronic films.

Thorough investigarions on pre-tensioned films have been conducted,
experimentally and analytically, by Hu er a/. (1988), Hu and Evans (1988),
Drory er al. (1989), Suo and Hutchinson (1989b), and Chiao and Clarke
(1990). Focus here is on the steady-state spalling, with the transient stage
ignored, since the former provides a well-defined design limit. In the follow-
ing, the essential mechanics will be elucidated using a simple system, and
results will be cited for more general cases. The analysis is arranged
separately for spalling originating from edges or channel cracks (planar
geometry), and from holes.

a. Planar Geometry

Inserted in Fig. 50 is a long crack at a depth d in the substrate, driven by
the residual tension in the film. Plane strain conditions are assumed. The
film is attached to a semi-infinite substrate with the same elastic moduli.
Results without these restrictions will be cited later. The equivalent edge
force and moment due to ¢ are

P=gh, M =ch(d- h)/2. G.11)
ihn
10 °
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Fi16. 50. The insert shows a spalling crack. The plo is the mode mixity for crack at various
depths.
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Specialized from (3.12), the stress intensity factors are
Ki/aVh = (h/2d)"*[cos w + V3(1 — h/d)sin w], (5.12)
Ky/avh = (h/2d)"*[sin w — V3(1 — h/d)cos w). (5.13)

where w = 52.07°. The mode mixity w = tan"'(K,/K,) is plotted as a
function of crack depth in Fig. 50. Notice K;; > 0 for small depth, but
Ky < 0 for large depth and, consequently, a pure mode 1 trajectory exists
at an intermediate depth.
This steady-state spalling depth d,, is determined from (5.13) with
Ky = 0. Thus,
d,, = 3.86h. (5.19)

The steady-state, mode 1 energy release rate can now be readily evaluated
from (5.12), which gives

G,, = 0.3436%h/E. (5.15)

This pre-factor was cited in Fig. 43.

Suo and Hutchinson (1989b) carried out an extensive analysis to include
elastic mismatch and finite thickness of the substrate. The general solution
for arbitrary edge loads is summarized in Section III.B.5. The results for
spalling cracks caused by the residual stress in the film are reproduced in
Fig. 51. Observe that the spalling depth depends strongly on both elastic
mismatch and substrate thickness. However, the dimensionless stress
intensity factor is insensitive to the substrate thickness as long as H/h > 10.

There has been no formal proof that the spalling trajectory is configura-
tionally stable. One heuristic explanation, as shown in Fig. 51, is that
Ky > 0 when d < d,,, implying that a crack above d,, would be driven
down. Analogously, a crack below d,; would be driven up.

b. Spalling from Circular-Cut

Figure 52 shows an axial-section of a spalling crack emanating from the
edge of a circular-cut in the film, driven by residual tensile stress in the film.
In general, a hole in a pre-tensioned film acts like a stress raiser. However,
it differs from an open hole in a plate in that, for the former, cracking is
usually confined within a few times hole radius. Other cracking modes
around holes include channel cracks in films and decohesion of interfaces.
The latter will be treated in the next section.

As indicated in Fig. 52, the hole radius is by, and the crack extends to a
radius b. For simplicity, the elastic moduli for the film and substrate are
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Fic. 51. Spalling results for film-substrate of dissimilar elastic constants and finite
substrate. Both mode I stress intensity factor for the steady-state propagation and the depth of

the crack path are given.
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Fic. 52. An axial-section of spalling from the edge of a circular-cut.
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taken to be the same, and the substrate semi-infinite. The equivalent edge
force P and moment M, per unit length, are still given by (5.11). The stress
state in the annulus between b, and b can be determined by the classical
plate theory, with the outer boundary clamped. The analysis shows that the
moment and force at the crack front are modified by a factor:

M(b) = M/k,  P(b) = P/k, (5.16)
where
k=311 + v) + (1 — v)(b/bo)). (5.17)

These loads are indicated in Fig. 52.

The results of Section II1.B.1.d are applicable with moment and force
M(b) and P(b) used. In particular, the energy release rate is modified by
factor k2, i.e.,

2 2
1
G=%(@7+€.{>, =SB, A=Ed  (19)

This result can also be derived by an energetic accounting, i.e.,
G = (2nb)~' aU/ab,

where U is the strain energy stored in the clamped circular plate. From this
latter approach, it would be clear that the solution is the exact asymptote as
(b - by)/h — .
The stress intensity factors (5.12) and (5.13) are modified accordingly by
a factor of k. Thus, the steady-state depth d,, is independent of b/b,, and
is identical to the plane strain result (5.14). The mode I driving force for
spalling now becomes
0.3430%h
K°E -

Since k increases with b/b,, the spalling crack from a circular-cut would
usually arrest.

G= (5.19)

D. INTERFACE DEBOND

Pre-tensioned films are susceptible to decohesion or, more precisely,
de-adhesion, from substrates. Flaw geometry plays an important role:
Debonding emanating from an edge defect, a hole, or a through-cut would
behave differently. Analytical results for the first two geometries will be
summarized, and the third can be found in Jensen er al. (1990).
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Fic. 53. Mode mixity and energy release rate for a debonding crack.

1. Decohesion from Edges or Channels

Figure 53 illustrates a pre-tensioned film debonding from a substrate. The
edge load is a special combination of that studied in Section II1.B.4, and the
notation there is followed. The misfit stress is equivalent to the mechanical
loads (see Fig. 26):

P,=Py=0h, M;=(1/2+1/n-A)h*, M,=0. (5.20)
Specialized from Eq. (3.22), the energy release rate is

GoChl, _E_ZU/2+1/n- Ay

T2, A I '
The loading phase y is defined by K = |K|h™* exp(iy), as is consistent
with the convention in (2.45) with / = h. Both the driving force and mode
mixity are plotted in Fig. 53. Observe that the decohesion process is
inherently mixed mode, consisting of somewhat more sliding than opening.

(5.21)
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The effect of the substrate thickness on the driving force is significant when
the film is stiff.

Argon er al. (1989) have used the residual stress as a driving force to
measure interface toughness. The result in this section can also be used to
calibrate the residual stress effect on some interface fracture specimens,
e.g., the UCSB four-point flexure specimen. The complex interfacial stress
intensity factor is a superposition of the contribution from residual stress
and that from mechanical load.

2. Decohesion from a Hole

Figure 54 illustrates a decohesion crack emanating from the edge of a
hole in a pre-tensioned film. Results developed in Section C.2.b for
substrate spalling are still valid here. In particular, the energy release rate is
given by
_ ha®
T 26K

where & is given by Eq. (5.17). The result is now valid for films and
substrates with dissimilar elastic constants, but the substrate is still assumed
to be much thicker than the film. The mode mixity is independent of b/b,
when (b — by)/h is sufficiently large, and is identical to the plane strain
results (Fig. 53, h/H = 0).

Decohesion from a circular-cut is stable and has been used to determine
interface toughness by Farris and Bauer (1988) and Jensen er al. (1990).
This is particularly feasible when the film is transparent, so that the
decohesion radius b can be readily measured.

G (5.22)

G X

Fi6. 54. An axial-section of a decohesion annulus originated from an edge of a circular-cut.
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Fic. 55. A model for thermal shock spalling.

E. THERMAL SHOCK SPALLING

1. An Idealized Mode!l

Consider a block of brittle material with a thin, pre-tensioned, surface
layer. Spalling is possible if the residual stress has a negative gradient with
depth. An example is depicted in Fig. 55. A semi-infinite body is initially
immersed in a heat bath of temperature 7, so that a uniform temperature
is established in the body. Upon the removal of the block from the bath, the
surface temperature is assumed to drop instantaneously to the room
temperature T;. A biaxial tensile residual stress thus develops in a surface
layer, as shown schematically in Fig. 55. The equivalent edge force and
moment are also indicated. The stress profile changes with the time, and so
does the ratio M/P.

The problem features a dimensionless number

¢ = h/Ntap, (5.23)

where 4 is the depth of the crack parallel to the surface, ap the thermal
diffusivity, and r the time elapsed after the removal of the heat source. At
any given time, a mode I crack path parallel to the surface is available—that
is, a number &, exists where K|, = 0. However, for small ¢, the depth & is
correspondingly small, and therefore the strain energy stored in such a thin
layer is insufficient to drive the spalling. Consequently, a certain time elapse
is needed before spalling. The following is an attempt to quantify these
considerations.

2. Spalling Depth and Time Elapse

Consider first the temperature and stress field prior to cracking. At a
given time ¢ after the removal from the heat bath, the temperature at a
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depth z is -
T(z,t) =T, + (T, — Ty erfc(z/2~tap). (5.24)

The biaxial, tensile, thermal stress field varies with the depth and time, in
accordance with

g, = 6, = a(z,1) = gperfc(z/2V1ap), (5.25)
where
0o = ap(T, — T)E/(1 - v), (5.26)

and o is the thermal expansion coefficient. These are classical solutions,
which may be extracted from standard textbooks.

Next consider the half space with a spalling crack (Fig. 55). The resultant
force and moment can be expressed as

P =la,h, M= @G- J)ah?, (5.27)
where
1 1 1 3
I(¢) = E erfc(u/2) du, J(&) = 22- uerfe(u/2ydu. (5.28)
Jo Jo

The stress intensity factors can be calculated from Section I11.B.1.d.

The number ¢ corresponding to a mode I trajectory is determined by
enforcing K;; = 0. The problem involves a nonlinear algebraic equation,
and the numerical solution gives

hy, = 6.82V!tap. (5.29)
The corresponding mode I stress intensity factor is
K; = 0.1900,Vh,, . (5.30)

Given the toughness and stress level, the depth 4, may be predicted from
(5.30), and the time elapse for spalling can then be estimated from (5.29).
Observe that the spalling depth is independent of the thermal diffusivity, as
a feature of this idealized model. As an example, consider a glass with
K = 0.7MPam'?, g, = 100 MPa, ap = 0.7 x 10-*m?/s. The predicted
crack A=pth is A, = 1.4 mm, and the time to spalling is 7 = 6 x 10725,
This tiny time elapse is possibly an outcome of the idealized temperature
boundary condition that has been adopted.

V1. Buckle-Driven Delamination of Thin Films

In many film/substrate systems, the film is in a state of biaxial compres-
sion. Residual compression has been observed in thin films that have been
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F1G. 56. The photograph on the left from Argon er al. (1989) shows a SiC film on a Si
substrate delaminating as a wavy circular blister. On the right is a photograph supplied by
M. D. Thouless, which shows examples of the straight-sided blister and tae telephone cord

lister occurring in a multilayered film delaminating from a glass substrate.

sputtered or vapor deposited and it can arise from thermal expansion mis-
match. Some remarkable failure modes of such systems have been observed,
examples of which are shown in Fig. 56. These pictures reveal regions where
the film has been buckled away from the substrate. Various shapes of the
buckled regions evolve, including long straight-sided blisters, circular blisters
with and without wavy edges, and the so-calied telephone cord blister, which
is perhaps the most common morphology. The failure entails the film first
buckling away from the substrate in some small region where adhesion was
poor or nonexistent. Buckling then loads the edge of the interface crack
between the film and the substrate, causing it to spread. The failure
phenomenon couples buckling and interfacial crack propagation. The
straight-sided blister grows at one of its ends. The telephone cord blister
grows at its end as if a worm were tunneling beneath the film.

This section presents an analysis of the straight-sided and circular blisters
and concludes with some speculation about the origin of the telephone cord
morphology. It will be seen that a key aspect of the phenomena is the mixed
mode fracture behavior of the interface, wherein I'(y) increases sharply
with increasing mode 2.

Formulas relating the energy release rate of the interface crack to the
buckling parameters were derived for one-dimensional ply buckles on the
surface of laminated composites by Chai er al. (1981). Essentially identical
results were obtained by Evans and Hutchinson (1984) and Gille (1985) for
the thin-film problem. The energy release rate for the circular blister in
biaxially compressed films was given by Evans and Hutchinson (1984) and
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Yin (1985). The significance of the mixed mode character of the interface
crack tip was apparently first appreciated by Whitcomb (1986), who showed
that the crack tip becomes predominately mode 2 as a one-dimensional ply
buckle spreads. His observation was essential to explain why the buckles do
not keep spreading along their edges under constant overall load—that is,
why the buckles have a characteristic width. Whitcomb was concerned with
compressive failure modes in layered composites. Here, the concern will be
with thin films under equi-biaxial compression, but a number of the results
and conclusions carry over directly to ply delamination. Storakers (1988)
and Rothschilds er al. (1988) deal with various aspects of buckling and
delamination in composites, and these authors cite relevant literature in the
comj.osites arena.

This section starts with a one-dimensional analysis of the infintely long
straight-sided blister, closely paralleling the analysis of Whitcomb (1986).
Given the availability in Section II1.B.4 of the relationships between the
interface stress intensity faciors and the moment and resultant force change
at the edge of the buckle, the one-dimensional analysis can be carried out in
closed form. The analysis of the circular blister, which requires some
numerical work, is presented next. The two sets of results are then com-
bined in an analysis of steady-state propagation of a straight-sided blister.
The steady-state problem gives perhaps the sharpest insights into design
constraints on compressed films.

A. THE ONE-DIMENSIONAL BLISTER

Consider an x-independent segment of the straight-sided blister shown in
Fig. 57. The film is taken to be elastic and isotropic with Young’s modulus
E,, Poisson’s ratio v,, and thickness 4. The substrate is also assumed to be
isotropic but with modulus E, and Poisson’s ratio v,. The substrate is
modeled as being infinitely deep. The film is assumed to be unattached to
the substrate in the strip region —b < y < b. A plane strain interface crack
of width 2b exists between the film and the substrate.

The unbuckled film is assumed to be subject to a uniform, equi-biaxial
compressive in-plane stress, g,, = g,, = —0. In the unbuckled state, the
stress intensity factors at the crack tips vanish. Only when the film buckles
away from the substrate are nonzero stress intensity factors induced. Under
the assumption that & < b, the film is represented by a wide, clamped Euler
column of width 2b. The complex stress intensity factor K at the right-hand
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tip is related to the moment M and to the change in resultant stress AN at
the right-hand end of the column by the relationships given for the 2-layer
problem in Section 111.B.4. Use of the 2-layer solution to characterize the
crack tip field is justified if #/b < 1, which is, in any case, the condition for
the validity of the Euler theory. In what follows, the 2-layer solution is first
specialized for the present applications. This solution is also used in the
analysis of the blister test discussed in Section VII, and should have fairly
wide applicability. Then, the Euler solution is presented and is coupled to
the 2-layer solution.

1. General Loading of an Edge Crack on the Interface
between a Thin Film and Substrate

Let M and AN be defined with the sign convention in Fig. 57. These
quantities will be identified with the moment/unit length and the change in
resultant stress at the right end of the wide Euler column. Specializing the
solution of Section I11.B.4 to the limit of the infinitely deep substrate, one
finds for the interface crack:

G = 6(1 ~ v)E'h3(M?* + h* AN?*/12), (6.1)

: 6(1 — a)|'? _3,2[hAN _ ] .
Kh® = -| ——=1 h — + iM e, 6.2
[ 1 —/32] iz ! ©-2)

v = Im(Kh*)  V12Mcosw + hANsinw
~ Re(Kh®) —v12Msinw + hANcosw

tan (6.3)

h z
} ! r°
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FiG. 57. Geometry of the one-dimensional blister, and conventions for the elasticity
solution characterizing conditions near the tip of an interface crack between a thin film and an
infinitely thick substrate. Top left: unbuckled; bottom left: buckled; right: local loading of
interface crack.
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Fic. 58. Phase factor w(a, #) in (6.2) and (6.3).

Here, w = w(a, 8, h/H = 0), which is plotted in Fig. 58 for # = 0 and
B = a/4. The mode mixity parameter y is defined using the film thickness
h as the reference length /.

2. Euler Column Solution and Coupling
to Interface Edge Crack Solution

The one-dimensional deformation of the wide column in Fig. 57 is
characterized by the y- and z-displacements, V(») and W(y). These are
defined to be zero in the unbuckled state with pre-stress o,, = g,, = —0.
The wide column is taken to be characterized by von Karman nonlinear
plate theory with fully clamped conditions at its edges, i.e.,

V=W=W,y=0 aty=+b. (6.4)

The change in the y-component of the stretching strain measured from the
unbuckled state is _
g =V,y+ W,y (6.5)

while the bending strain is W, yy. With N, and N, as the resultant stresses
and with AN, = N, + oh and AN, = N, + oh as the changes in the
resultant stresses from the unbuckled state, the strain component ¢, is
related to AN, by

g = (1 ~ v}) AN,/(E, h). (6.6)

Since g, = 0, AN, = v, AN, . The bending moment is related to the bending
strain by M, = DW, yy, where D = E,h*/[12(1 — v})] is the bending stiff-
ness. In-plane equilibrium requires AN,, y = 0. Therefore, AN, can be
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taken to be the value at the end of the beam, AN. Moment equilibrium
requires
DWW, yvyvy — (AN — o)W, vv = (. (6.7)

The solution to the preceding system of equations is given in (6.8)-(6.12):

W = 1ER[1 + cos(ny/b)], 6.8)
n* Dh
M = M) = 5 5= & (6.9)
AN = 3n? Dcz (6.10)
T4 prt '

The amplitude of the buckling deflection, £, has been defined such that
W(0) = £h. It is related to the residual stress by

172
i)

2 2 2
ac:szz_’_[_ E, 2)<£>. (6.12)

Here, o is the classical buckling stress of a clamped-clamped wide plate.
The residual compression in the film, o, must exceed o, if the film is to
buckle away from the substrate for a given interface crack length 2b. The
nondimensional ‘‘loading parameter’” is ¢/0.. Since g, decreases as b
increases, g/a, increases as b increases.

The energy release rate is determined by substituting the expressions for
M and AN in (6.9) and (6.10) into (6.1), with the result

where

G = [(1 - vD/QE D)o - a.)(o + 35,). (6.13)

This result is in agreement with Chai er al. (1981), Evans and Hutchinson
(1984), and Gille (1985). Substitution of the same expressions into (6.3)
gives

dcosw + V3&sinw
—4sinw + V3fcosw

tany = (6.14)

Recall that y is defined relative to the reference length / = h, and is given
here for the crack tip at y = +b.
For large o/0., G asymptotically approaches

G, = [(1 — v)h/(2E)))0o>. (6.15)
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F1G. 59. Energy release rate and buckling deflection for one-dimensional blister.

This is just the strain energy per unit area in the film, which is available
when released subject to the plane strain constraint ¢, = 0.! The normalized

energy release rate is
G _ ( _ g_c)<1 N 395), (6.16)
G, g g

which is plotted in Fig. 59 together with the buckling deflection amplitude
from (6.11). The interface crack length 2b enters the expression for G
through o, in (6.12). For a given pre-stress g, G approaches G, as b — ;
it vanishes when o. = g; and it attains its peak value 4G,/3 at g/0, = 3.
The fact that G exceeds G, is not a violation of energy conservation. The
total energy released per unit length of buckle (i.e., the integral of 2G with
respect to b) is always less than 2G, b, and only approaches 2G,b as b — .
The explicit expression is given later in (6.35).

" The strain energy per unit area stored in the film is [(1 ~ v,)#/E,)o?. Reducing N, to zero
subject to £, = O releases (6.15) when negligible bending energy remains in the film. The results
in (6.8)-(6.16) are valid for residual stresses for any g, as long as 6, = —a. They apply not only
to the thin film problem but also to the x-independent mode of delamination for a surface ply
on a thick composite plate.
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Fic. 60. Phase of loading  at the right-hand crack tip for the one-dimensional blister.

Curves of the mode mixity measure y at the right-hand crack tip are
shown as a function of ¢/0. in Fig. 60 for several values of «, all with
B = 0. Elastic mismatch affects y only through w in (6.14). Since w is
relatively insensitive to mismatch when f = /4 (see Fig. 58), plots of ¢
versus g/a, have not been displayed for this case. For o/0. slightly above
unity, and thus small £, (6.14) gives

tan ¥ = ~cot w, or y=—((n/2) — w). (6.17)

In the absence of elastic mismatch, w = 52.1° and y starts at —37.9°. As
o/a. increases and as £ increases, the relative propor:ion of mode 2 to
mode 1 increases. The value of 6/0, at which the crack tip loading becomes
pure mode 2 (i.e., ¥ = —90°) can be obtained from (6.11) and (6.14).

g/a. =1 + 4tan’ w, (6.18)

which is attained when ¢ = (4/V3)tan w. Note that this point where all
mode 1 is lost is a fairly strong function of elastic mismatch. For no
mismatch, o/0, = 7.55. The strong increase in mode mixity as the buckle
spreads has important implications for buckle-driven decohesion, as will be
discussed with the aid of several interface toughness functions in the next
subsection.

Before applying the results of this section, we note in passing that the von
Karman nonlinear plate equations accurately represent the buckling behavior
as long as h/b < 1 and rotations satisfy (W, y)* < 1. Comparison of the
predictions from von Karman theory with the more accurate elastica, for
example, reveals that the present predictions retain reasonable accuracy for
buckling deflections W (0) that do not exceed b/3. Note from Fig. 59 or (6.11)
that W(0) = 3.46h when o/a. = 10. Thus, for example, if A/b is less than
about 1/1¢, the above predictions retain accuracy for o/o_ as large as 10.
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3. Extent of Interface Decohesion:
The One-dimensional Blister as a Model

There is often some rate dependence associated with buckling-driven
decohesion, due most likely to species in the air gaining access to the inter-
face crack tip, a process akin to corrosion assisted crack growth. The
discussion that follows will neglect any rate dependence. It will be assumed
that interface crack advance occurs when the condition G = I'() is reached.

Consider first the consequences of assuming an ideally brittle interface
where the critical energy release rate is mode-independent, i.e., G = Gf. To
facilitate the discussion, assume an initial decohered region of width 2b,
exists on the interface, and imagine a scenario in which biaxial compressive
stress in the film o is increased, due, for instance, to temperature change
when there exists a thermal expansion mismatch between the film and
substrate. For a given set of parameters of the system, plot curves of G/G;
versus b at various levels of ¢ using the normalized curve in Fig. 59. Such
curves are sketched in Fig. 61a, where the lowest curve corresponds to the
value of ¢ at which the buckling starts with b = b;. Denote by o, the value
of o associated with the curve that intersects the fracture criterion,
G/G§ = 1, at b = b;. In the scenario in which ¢ is increased, one would
observe buckling without decohesion for o between (o.); and o,. At o,
crack advance would be initiated and would necessarily be unstable since
G/G; exceeds 1 as b increases. The blister would spread dynamically
without arrest.

Alternatively, suppose a level of g exists below o, , say 6 = o, in Fig. 61a,
and suppose an external agent forces the decohered region to expand until
b reaches the point where G/GY = 1. As in the previous scenario, the crack
would expand unstably from that point onward. In some previous work
(e.g., Gille, 1985), it has been argued that the combination of Gy, b, and ¢
lies on the decreasing portion of the G versus b curve, thereby allowing
stable crack growth. Although this is a possibility, this argument seems
implausible as a general explanation because the drop from the peak to the
asymptote for b — o« is small. In fact, G increases monotonically with
increasing blister radius in the case of the circular blister discussed in the
next subsection; thus, there is no drop and there would be no arrest for that
geometry.

The qualitative influence of the mode dependence of interface toughness
on the arrest of blister spreading can be anticipated from the relation
between y and a/a. in Fig. 60. Neglect for the moment any consideration
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Fic. 61. Schematic of instability analysis of one-dimensional blister. a) based on an ideally
brittle interface with propagation condition G = Gj. b) Based on G = I'(y), where I increases
with increasing |y|.

of B-effects in the elastic mismatch, and suppose that the toughness function
I'(y) increases with increasing |w/| as discussed in Section I1. Then, curves of
G/T'(w) versus b at various levels of ¢ would display the trends shown in
Fig. 61b. Given an initially decohered region of width 2b;, the blister would
spread dynamically when ¢ attains o,, and would arrest at b = b,. With
further increase of o, the blister would spread stably with the condition
G = I'(w) maintained. Whether it would spread beyond the point where (6.18)
is attained depends on the condition governing pure mode 2 crack growth.

A quantitative prediction requires the specification of a specific functional
form for I'(yw). The discussion that follows will use the forms (2.40) and
(2.44). which are plotted in Figs. 10 and 11, for the purpose of illustration.
They will be used again in the analyses of the circular blister and the steady-
state growth of the straight-sided blister. For either form, let

L(y) = Gif(w), 6.19)
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Fic. 62. Mode-adjusted crack driving force for the one-dimensional blister for two families
of interface toughness functions. No elastic mismatch.

where
f) =01 + (A - Dsin®y]™? for (2.40), (6.20)

fw) =1 + (1 - Dtany] for (2.44). (6.21)

Then, G/f(y) can be regarded as a mode-adjusted crack driving force in the
sense that the criterion for crack advance is G/f(y) = Gf. Curves of
normalized crack driving force are plotted in Fig. 62 for various choices of
A for each of the two families of toughness functions. The curves are
obtained directly using (6.16) and (6.14), and are shown for the case of no
elastic mismatch (o = § = 0). Recall that in each case the choice A = 1
reduces to the ideally brittle criterion G = Gf, while 1 = 0 coincides with
the criterion K, = K{ = (E,G{)'>.

The two families of interface toughness functions (6.20) and (6.21) prob-
ably bracket toughness trends for a class of material combinations, such as
those discussed in Section II, in the sense that (6.20) most likely
underestimates the rate of increase of I'(y) with respect to w near mode 2
while (6.21) probably overestimates that rate of increase. Depending on A
and the other parameters of the system, either arrest or unarrested
spreading of the blister can occur according to (6.20). Arrest will always
occur according to (6.21), assuming 4 < 1.

The effect of elastic mismatch on the normalized driving force is shown
in Fig. 63 for one choice of A for each of the two toughness functions, in
each case for various o with 8 = 0. A stiff film on a compliant substrate
(o > 0) enhances the peak crack driving force and accentuates its fall-off
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Fic. 63. Effect of elastic mismatch on the mode-adjusted crack driving force for the
one-dimensional blister: (a) based on (6.20); and (b) based on (6.21).

with increasing b. When S # 0, the approach is similar to that just
described except that now the criterion for advance is G/f(§) = G5, where
W is associated with some material-based length I through (2.45). Since y in
(6.14) is defined for the choice / = h, one must take into account the
relation (2.49) between y and ¥ in determining the crack driving force.

B. THE CIRCULAR BLISTER

In this section, the axisymmetric counterpart to the one-dimensional
blister is considered. An analysis along similar lines to that presented here
was given by Chai (1990) for the special case where no elastic mismatch
exists between the film and the substrate. The geometry for the circular
blister is similar to that in Fig. 57 except that the radius of the buckled
region is taken to be R. The analysis again couples a buckled plate repre-
senting the circular decohered region of the film with the elastic solution for
a semi-infinite edge crack on an interface, as depicted in Fig. 57 and as
presented in Section VI.A.1. For the axisymmetric geometry, the nonlinear
von Karman plate equations cannot be solved in closed form, except asymp-
totically for sufficiently small buckling amplitudes. Numerical methods
must be used to solve the equations for the buckled plate.

1. Governing Equations

The von Karman nonlinear plate equations for axisymmetric deforma-
tions of a completely clamped circular plate of radius R, thickness 4, and
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subject 10 an equi-biaxial compressive stress ¢ in the unbuckled state are as
follows. Let r be the distance from the center of the plate normalized by R,
N,(r) the resultant radial in-plane stress, AN,(r) = N,(r) + gh the change in
this component from its value in the unbuckled state, and let W'(r) be the
vertical displacement component. With
daw
o(r) = [6(1 — vD)V*h™ — (6.22)
dr
as a measure of the rotation, the two equations of equilibrium can be
written in nondimensional form as

i rgi)> - r_'¢ + ré(@ — AN,) = 0, (6.23)
dr\ dr

d 3dANr 2 _

E(;- a ) + re° =0, (6.24)

where G = 0hR*/Dand AN, = AN,R*/D. As before, D = E, h*/[12(1 ~ v?)]
is the bending stiffness. The conditions at 7 = 0 are ¢ = 0 and d AN,/dr = 0.
The fully clamped conditions at r = 1 require

¢ =0, g—;(r AN,) = v, AN, = 0. (6.25)

The energy release rate, interface stress intensity factors, and mode mixity
parameter in (6.1)-(6.3) are evaluated using the bending moment and the
change in resuitant stress at the edge of the plate, which are given by

M = DhR™*[6(1 — v)I"VX(d¢/dr), .,

~ (6.26)
AN = DR™*(AN,), .-

2. Asymptotic Solution for Small Buckling Deflections

Evans and Hutchinson (1984) derived a formula for the energy release
rate using an asymptotically valid solution to the preceding system of
equations for small buckling deflections. That result will be reproduced
here without derivation along with a new companion result for the mode
mixity parameter .

The classical buckling stress of a clamped circular plate is

2 2
. _H D - 5_.___.E' .’.‘.
a. Rh - 1.223 T-vI\R)" (6.27)




160 J. W. Hutchinson and Z. Suo
Where u = 3.8317 is the first nontrivial zero of J(x), the Bessel function of
the first kind of order one. The associated axisymmetric mode is

W (r) = [0.2871 + 0.7129J,(un}h, (6.28)

where Jy(x) is the Bessel function of the first kind of order zero. The mode
is normalized such that W,(0) = A. "

The asymptotic solution is obtained by developing an expansion of the
buckling flection (and other quantities) in the form

W(I‘) = éu/l + ézu’z + e, (629)

where ¢ is the buckling amplitude, To lowest order, & = 6/h, where d is the
deflection at the center of the plate. The asymptotic relation between £ and

o/al is
1 172
CRE e
¢, \o?

where ¢, = 0.2473(1 + v,) + 0.2231(1 — v}). The asymptotic result for the

energy release rate is
G o,* 2
_G[{ = Cz[l - (ﬁ) ] , (6.31)

where ¢, = [1 + 0.9021(1 — v,)]" and
G} = (1 — v)ho*/E, (6.32)

is the strain energy per unit area stored in the unbuckled film." The asymp-
totic relation between the mode mixity parameter for the interface crack
and the buckling deflection is

cos w + 0.2486(1 + v,)¢sinw

t = . 6.33
any ~sinw + 0.2486(1 + v;)cos w ( )

For sufficiently small £, v approaches (6.17), just as in the case of the one-
dimensional blister. The asymptotic results are shown in Figs. 64 and 65,
where they are compared with the results of an accurate numerical analysis
described next.

' The expression for ¢, given here corrects the coefficient given by Evans and Hutchinson
(1984). Their derivation made use of a result for the initial post-buckling behavior of a clamped
circular plaie given in the text by Thompson and Hunt (1973), which does not correctly account
for the Poisson’s ratio dependence. The present result incorporates the corrected solution. The
difference between ¢, and the earlier result of Evans and Hutchinson is less than 1% for
v, = 0.3.

]
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F1G. 64. Energy release rate and edge loading ratio for the circular blister.
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Fic. 65. Phase of loading  at interface crack tip for the circular blister for three levels of
elastic mismatch.
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Fic. 66. Mode-adjusted crack driving force for the circular blister: a) based on (6.20); and
b) based on (6.21).

3. Numerical Solution for Arbitrarily Large Buckling Deflections

An accurate finite difference method was used to solve the coupled
ordinary differential equations (6.23) and (6.24), subject to the stated
boundary conditions. Newton iteration was used to obtain a converged
solution for each specified value of g/a7. All calculations were carried out
with v; = 1/3. The results for the quantities of interest are shown in Figs.
64-66. The results for G are in agreement with calculated results of Yin
(1985) and Chai (1990), while the present results for y for the case of no
elastic mismatch are in accord with the trends of G, and G, presented by
Chai. Note that the curve for h AN/(~12M) in Fig. 64 permits v to be
computed using (6.3) for any elastic mismatch.

The energy release rate of the interface crack increases monotonically
with increasing R (decreasing @) for the circular blister, as can be seen in
Fig. 64. Its approach to Gy is very slow. At a/6? = 50, G/Gg = 0.85 (not
shown in plot). The asymptotic formula (6.31) is reasonably accurate for
o/06! up to about 3. The asymptotic formula (6.30) for &/h retains its
accuracy to surprisingly large values of 6/a2. A plot of 6/h is not shown,
but, with £ = /h, (6.30) overestimates the accurate numerical result at
o/af = 10 by only 7%. As in the case of the one-dimensional blister,
buckling deflections that are large compared to the film thickness imply
residual stresses that are many times the classical buckling stress 2 of the
corresponding plate of film. The asymptotic formula (6.33) for v is also
valid for values of a/af up to about 2 or 3, as can be seen in Fig. 65.
However,  does not vary as strongly with a/¢? for the circular blister as
for the one-dimensional blister (¢f. Fig. 60), a feature also emphasized by
Chai (1990). In particular, the interface crack of the circular blister does not
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aitain pure mode 2 in the range of o/¢* shown, as its one-dimensional
counterpart does. Even for ¢/0? as large as 50. some mode | persists with
v = —-84° for o = £ = 0. This feature may be at the heart of why growth
of the blisters is favored along a curved front rather than a straight one.
Plots of the normalized crack driving force G/[Gjf(w)] are shown in
Fig. 66 for the same two interface toughness functions, (6.20) and (6.21),
used to construct the plots for the one-dimensional blister in Fig. 62. For
reasons noted previously, the crack driving force does not fall off nearly as
rapidly as the blister spreads as for the one-dimensional blister. The fact
that circular blisters have been observed for some systems is indirect
evidence for an interface toughness function that increases sharply with
increasing mode 2, such as that used in constructing the curves in Fig. 66b.

4. Tendency toward Spalling as the Blister Spreads

Circular spalls are observed in some systems where the film is brittle.
Evidently, the radius of the blister increases until it reaches a point where
the crack kinks out of the interface into the film, spalling out a circular
patch of film. The mixed mode conditions at the tip of the interface crack
derived in the previous sections contribute to the likelihood of this type of
spalling in two ways. First, with reference to the kinking solution in Section
I1.C.5, one notes that kinking upward into the film is favored energetically
as y becomes more negative, with the largest value of Gg,,/G attained at
w = —60°. Secondly, as the blister spreads and as |y| increases, the G
needed to advance the interface crack increases, assuming I'(y) increases
with increasing |w{. Thus, as the blister spreads, the maximum energy
release rate available for a crack kinking into the film, G_,,, increases,
Kinking, and spalling, is to be expected if G.,, attains the fracture

toughness of the film.

C. CONDITIONS FOR STEADY-STATE PROPAGATION
OF A STRAIGHT-SIDED BLISTER

An example of the straight-sided blister is shown in Fig. 56 and is
sketched in Fig. 67b. Under steady-state conditions, the width of the blister
remains fixed and the growth occurs by interface crack advance along the
more-or-less circular end of the blister. An approximate analysis of the
conditions for steady-state blister propagation is given.
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F1G. 67. a) Condition for steady-state propagation of straight-sided blister for the interface
toughness function (6.21). b) Mode-adjusted crack driving force on the sides of the straight-
sided blister. The condition that the sides are in an arrested state is G/F(y) < 1.

Under steady-state conditions, the total energy released per unit advance
of the blister is precisely \he energy released by a unit length of the one-
dimensional blister of Section B.2 in spreading from the smallest width for
which the buckle has nonzero amplitude, 2b, = 2n[D/(ch)}'/?, to 2b. Thus,
the average steady-state energy release rate of the advancing end is

b
G, = b“j G db, (6.34)
by

where G is given by (6.16). Noting that g. depends on b according to (6.12),

one readily obtains
2
G, = (1 - 5) G,. (6.35)
g

It is also useful to note that by/b = (0./0)""2.

An exact propagation condition would require that G, be equal to the
average of the interface toughness I'(y) across the propagating end of the
blister. This, in turn, would require knowledge of the precise distribution of
v across the end of the blister. As an approximation, take

G, = I'(y*), (6.36)
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where w* is the mode mixity parameter for a full circular blister of radius
b subject 1o the same biaxial stress 0. To see how this generates specific
predictions, again represent the interface toughness function as

I'(v) = Gif(y). (6.37)

and rewrite the propagation condition (6.36), using (6.35) and (6.195), as

G, (1-vdHo'h < o.\"*
— T e 1 —_—— *® . . 8
G¢=  2E,G A (6.38)

The right-hand side of this equation is a function of ¢/0, since w* is a
function of a/a’ (¢f. Fig. 65) and o¥/0, = 1.4876.

The right-hand side of (6.38) is plotted in Fig. 67a for a choice of f(y)
used previously, (6.21), for several values of A. These curves were computed
using the solid line curve for w* versus o/¢f in Fig. 6.10 for the case
a = f =0 with v; = 1/3. Recall that 2 = 0 corresponds to the inter{ace
fracture criterion K, = K§, while 4 =1 corresponds to the Griffith
criterion G = Gf. To interpret these curves, it is helpful to present results
that display whether or not the parallel sides are in a state consistent with
interface crack arrest. For this purpose, the ratio G/T'(y) holding on the
sides is plotted as a function of 6/0 in Fig. 67b, where G is given by (6.16)
and y is given by (6.14) for the straight-sided blister. The combination of
(6.16) and (6.38) gives

G _(,_c ( ﬁ) )
Tw) - (’ o) ') Fw (6:39)
which is the expression used in plotting the curves in Fig. 67b. The fact that
G/T(y) = 0 at /0. = 7.55 for all A < 1 is a consequence of unbounded
mode 2 toughness assumed in connection with the choice (6.21) for f(y).
Consider the curves in Fig 67 for one of the A-values such that 1 < |1.
Note that [G/T'(¥)]ees < 1 for all values of g/o_ greater than or equal to
its value at the minimum of (1 — v¥)a?h/(2E,Gf). Thus, the sides of the
blister are in a state consistent with interface crack arrest everywhere to the
right of the minimum in Fig. 67a. By contrast, [G/T(¥))i4.s €xceeds unity
for nearly all /0. to the left of the minimum, implying a lack of con-
sistency with arrest of the sides. One concludes that the relevant branch of
each of the curves for A < 1 in Fig. 67a is that to the right of the minimum.
(The transition G/T'(y) so near the minimum may be somewhiat fortuitous
since the solution is not exact.)
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For a particular 2 (2 < 1), the smallest value ¢ consistent with steady-
state propagation is given by

(1 — v)oth
R e SN & }_ , 640

3E.G (2) (6.40)
where ¢(4) denotes the value of the ordinate in Fig. 67a at the minimum.
Equivalently, if o is regarded as prescribed, (6.40) gives the smallest value
of film thickness A consistent with steady-state propagation. The half-width
of the blister associated with (6.40) is

b _ n d()g) 172 Elh 1/4
R 2V3 {[mm“z} [(1 -vHGs| (6.41)

where d(2) is the value of /0, at the minimum.

For fil.in stresses o larger than the minimum in (6.40), or for film thick-
nesses A larger than the minimum, solutions exist on the branch to the right
of the minimum of the curves in Fig. 67a. The associated width of the blister
increases with increasing ¢. Equation (6.41) continues to apply with (d, ¢)
denoting a point on the curve in Fig. 67a. From a practical standpoint, the
minimum is probably of the most interest. For a film stress less than the
minimum (or a film thickness less than the minimum), extensive propaga-
tion of an initial blister can be avoided.

The behavior associated with the interface fracture criterion G = Gy
(i.e., A = 1) must be discussed separately. From Fig. 67a, one notes that
there exists a propagation solution for all values of (1 — v3)a*h/(2E,G{)
greater than unity. But, from Fig. 67b, one sees that these solutions are
inconsistent with arrest of the interface crack along the sides. Thus, it must
be concluded that there exist no steady-state straight-sided blister solutions
when the classical criterion G = Gy is presumed to hold.

The particular interface toughness function, (6.37) with (6.21), was
invoked to illustrate the calculation procedures for steady-state blister
propagation and to bring out some of its qualitative features. The example
reveals that steady-state blister propagation, as opposed to complete
decohesion of the film, is innately tied to the property of the toughness
function wherein it increases with increasing proportion of mode 2.
Details of the propagation of the straight-sided blister do depend on the
specifics of f(w). For example, the previous calculations were repeated
using (6.20) rather than (6.21). The function f(y) in (6.20) levels off as
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|w| approaches n/2 as opposed to (6.21), which increases sharply as the
mixity approaches pure mode 2. Only for a fairly small range of 2
(i.e., 0 = 2 < 0.15) does there exist a steadyv-state solution satisfving the
conditions discussed in the preceding. For /. in the range 0.15 < » < 1.
no solutions exist consistent with interface crack arrest along the straight
sides. Whether solutions exist in this range that are characteristic of the
telephone cord morphology (¢f. Fig. 56) is not known. The answer 1o this
question would obviously shed light on the nature of the interface
toughness function.

We end this section with some additional speculation on the possible
origin of the telephone cord morphology of blister propagation. The
approximate solution for the straight-sided blister does not address the issue
of the stability of the configuration. For example, is the symmetric con-
figuration (symmetric with respect to the line parallel to, and centered
between, the straight sides) stable with respect to nonsymmetric perturba-
tions of the interface crack front? One possibility is that, at sufficiently
large values of (1 — v?)a?h/(2E,GY¥), the steady-state straight-sided con-
figuration becomes unstable. Partial support for this speculation comes
from stability results for the circular blister (unpublished work in progress).
The circular blister becomes unstable to nonaxisymmetric perturbations of
the interface crack front at sufficiently large ¢. The value of /g at which
this instability occurs depends on the choice of I'(y), but is typically at or
above the value associated with the minimnm of (1 — v})a?4a/(2E,G5) in
the steady-state problem.

VII. Blister Tests

The blister test is used to measure interface toughness for a crack on the
interface between a film and a substrate. The test avoids edge effects of
various kinds and is highly stable. Although mixed mode conditions prevail
at the tip of the interface crack, most approaches to the subject have
concentrated on the relation between the energy release rate and the various
parameters of the test (Liechti, 1985; and Storakers, 1988). Recent work by
Chai (1990) and Jensen (1990) has elucidated the mixed mode character of
the test using an approach similar to that described in the previous section.
The separated blister is treated by plate theory and is coupled to the 2-layer
edge crack solution of Section VI.A.l1 to give G and w. The results that
follow are taken from Jensen (1990).
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A. PRESSURE LOADING

A circular blister loaded by a pressure p acting between the film and
substrate is depicted in cross-section in the insert in Fig. 68. The film is
modeled as a clamped plate of radius R subject to lateral pressure p. At
small deflections, within the linear range, the moment at the edge of the

plate is
M = }pR?, (1.1)

and the deflection ¢ at the center of the plate is
6 = &pR*/D. (7.2)

The resultant in-plane stress N is of order p*. Thus, for sufficiently small p,
by (6.1) and (7.1),

3AQ-v) ,.. 8 EnWS
= — ——— T = g 7.
C=%"Fr PR =300F% (.3
and, by (6.3),
tany = —cotw = = —((n/2) - w). (7.4)

This is the same combination of mode 1 and 2 that exists for the buckled
blisters at small buckling deflections. As in those problems, y is defined
here with / = h. Equation (7.4) is valid for sufficiently small p even in
the presence of an initial pre-stress in the film since the change in mem-
brane stress, AN, at the edge of the plate is of order p>. However, the
range of applicability of the formula will depend on the residual stress
level.
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Fic. 68. Energy release rate and ratio of edge loads for a blister under uniform pressure.
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There are only a few results in the literature based on rigorous 3-D
elasticity solutions that permit a direct assessment of the approximate
procedure that couples the plate solution to the 2-laver edge crack solu-
tion. Kamada and Higashida (1979) present results for K, and A, for the
case of no elastic mismatch, based on a full elasticity solution to the
circular blister loaded by uniform pressure. They find that v = -30° for
R/h=5 and w = -37° for R/h =10. This can be compared with
w = —37.9° from (7.4) when a = § = 0. Thus, their results suggest that
the approximate procedure is accurate for R/h as small as 10. Erddgan
and Arin (1972) have presented results for a penny-shaped blister crack
on an interface between materials with the mismatch characteristic of
epoxy and aluminum, but a numerical comparison with the present
results is not meaningful since the largest value of R/h for which they
have reported results is 2.5.

Calculations for G and y at large deflections have been carried out by
Chai (1990) and Jensen (1990) using the nonlinear von Karman plate
equations for the case of no residual pre-stress. Results from Jensen are
given in Fig. 68 as plots of a nondimensional G and Nh/M versus p/p,,
where N is the resultant in-plane radial stress at the edge of the plate and

16 E, a\?
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Fic. 69. Phase of loading of interface crack tip for several levels of elastic mismatch for a
blister under uniform pressure.
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F16. 70. Deflection-pressure relation for a blister under uniform pressure.

The ratio Ni/M is the basic information needed in (6.3) (with AN = N) to
generate y for any elastic mismatch between the film and substrate. The
curves of y versus p/p, are plotted in Fig. 69 for various o with 8 = 0.
As p increases, the ratio Nh/M increases giving rise to an increasing
proportion of mode 2 to mode 1. The increase only entails a change of y of
abcut 15°. For completeness, curves of 4/h versus p/p, are shown in
Fig. 70. The curves in these figures were computed with v, = 1/3, but they
are only weakly dependent on v,.
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FiG. 71. Energy release rate and ratio of edge loads for a blister under point load.
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B. PoinT LoADING

The theoretical predictions for a circular blister loaded by a concentrated
load P at its center (see insert in Fig. 71) have also been computed by
Jensen (1990). In the linear range, the moment ai the edge of the clamped
plate is

1

M=-—P, (7.6)
47

and the center deflection is

3(1 — v})PR?

J= 4nE W

amn

Then, by (6.1),
2E,h36?

A TTy T

(7.8)
and y is again given by (7.4). Curves of a nondimensional G and Nh/M
versus 8/h for arbitrarily large é/h are shown in Fig. 71. Curves of y versus
d/h are given in Fig. 72 for various o with f = 0. The mode dependence is
similar to that for the pressurized blister, except with a somewhat larger
change in y as the deformation becomes nonlinear. The dependence of /A
on P is plotted in Fig. 73. All these results were computed with v, = 1/3,
and initial residual stress is not included.
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Fic. 72. Phase of loading of interface crack tip for several levels of elastic mismatch for a
blister under point load.
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Fic. 73. Deflection-load relation for a blister under point load.

VII. Failure Modes of Brittle Adhesive Joints and Sandwich Layers

This final section focuses down to a finer scale than has hitherto been
addressed in most of this chapter. Attention is directed to modes of crack-
ing of a thin, brittle adhesive layer joining two identical bulk solids. The
discussion also has bearing on sandwich specimens, such as those discussed
in Section IV.C, which are designed to measure toughness of the interface
between the thin layer material and the adjoining material comprising the
bulk of the specimen. Figure 74 shows one such sandwich specimen. Below
it, at higher magnification, are depicted some of the multitude of cracking
morphologies that have been observed in brittle systems. A test series
carried out using any such sandwich specimen provides the macroscopic, or
effective, interface toughness function I'(y) characterizing the joint. In
assessing the effectiveness of a joint or in making engineering applications,
one need not necessarily be concerned with the local cracking morphology.
On the other hand, I'(y) itself may be a strong function of the cracking
morphology, and, if so, it is essential to understand what controls the local
cracking morphology in any attempt to improve the quality of the joint.
Similarly, attempts to measure the interface toughness I'(y/) between two
materials using a sandwich specimen can be defeated by tendencies for an
interface crack to misbehave in one of the other modes of cracking.




Mixed Mode Cracking in Lavered Materials 173

#1
J

e #2

S #1

)T )

{a) {b)

C N N
NN/ e~

N

{c) {d)

Fic. 74. Modes of cracking in a thin, brittle adhesive layer: (a) straight crack within layer;
(b) interface crack; (c) alternating crack; (d) wavy crack.

This section addresses some of the many issues surrounding local cracking
morphology. The discussion is restricted to brittle systems for which any
inelastic behavior occurs on a scale that is small compared with the layer
thickness A. The layer thickness is assumed to be very small compared with
the in-plane dimensions of the joint or of the sandwich specimen. At the
macroscopic level, the tip of a crack along the joint or layer is characterized
by macroscopic, or applied, stress intensity factors K;° and Kj. As
discussed in Section IV, these are determined from a standard analysis that
ignores the existence of the thin layer. The macroscopic energy release rate is

G™ = ETY (K + K7, (8.1)

where the numbering for the materials is shown in Fig. 74. The effective
toughness function of the joint as determined in a test is identified with the
critical value of the overall energy release rate at crack advance according to

Fw™) = G2, (8.2)

where ¥y = tan~(K[/K7).
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A. Basic RESULTS FOR STRAIGHT CRACKS

1. Straight Crack within the Laver (Fig. 74a)

A simple energy argument or application of the J-integral establishes the
equality of G and the local energy release rate at the tip, G. With K, and
Kj; as the local stress intensity factors, G = E; '(K} + Kj}). The condition
G = G<, together with (8.1) and linearity in the relation between stresses,
allows one to write the connection between the local and applied stress
intensity factors such as

1l -«
| + «

172
(KI + iI(u) - ( > (Kloo + I'K]T,\ew(“/h'a'ﬁ)- (8.3)
Here, ¢ = w — w™ is the shift in the phase angle between the local and
applied intensities. Fleck et al. (1991) have carried out calculations for ¢;
they give the approximation

h c 1\.
¢ = 8111(‘5 - 1) + 2(; - §>¢(a, ﬂ), (8.4)

where ¢ is plotted in Fig. 75. This result is unaffected by the presence of a
residual stress o;, = oy in the layer.

If the macroscopic specimen is loaded in mode I (K| = 0) and if the
crack does propagate down the centerline of the layer (¢f. discussion in next
subsection), then (8.3) gives Kj; = 0 and

172
) =, @®.5)
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9

FiG. 75. Phase factor é(«, B) in (8.4).
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This result, which was obtained originally by Wang er a/. (1978), reveals
that a crack within a compliant laver (o > 0) is shielded. With K. as the
intensity toughness of the layer material, the apparent roughness measured
using the sandwich specimen is

1+ o\'"?
K;f:(l °‘> K. (8.6)

- Q

An equivalent statement concerning the elastic shielding is that the load
needed to fracture the sandwich specimen differs from that needed to frac-
ture a geometrically similar specimen made entirely from the layer material
by the factor [(I + a)/(1 — «)]'’2. This factor can be quite large when a
stiff material is joined by a compliant adhesive, as is the case when, for
example, metal of ceramic parts are joined by a polvmer adhesive. If the
strength of a joint is controlled by crack-like flaws that are on the order of
the adhesive thickness or somewhat larger, then this same magnification
factor will apply to the strength of the joint compared to the strength of the
bulk adhesive with flaws of similar size. If the controlling flaws are much
smaller than the layer thickness, the magnification effect is lost.

3. Crack along the Interface (Fig. 74b)

The relation G* = G also holds for this case, where G is related to the
interfacial stress intensity factors K, and K, by (2.29). The equation relating
K, and K, to K{"and K7} is (3.38) with K| = K|° and K}; = K7;. With y for
the tip on the interface defined by (2.45) with / = A, the w-quantity in (3.38)
is w — w*. This shift in phase is generally small and even for the largest
elastic mismatches never more than about 15°.

As discussed in Section 1V.C, sandwich specimens are attractive for
measuring interface toughness. Assuming the crack does advance in the
interface, the equation for the interfaces toughness function is simply

Ty, ! = h)y =TWw™), (8.7)

where w = ¢¥® + w. Conversion of I'(y, h) to I'(§, ) where i is defined
using a material-based length / is readily carried out as specified by (2.51).
B. Crack TRAPPING IN A COMPLIANT LAYER UNDER NONZERO K7}

Equation (8.3) predicts a strong trapping effect due to elastic mismatch
between the layer and the adjoining blocks. When K[ is not too large




176 J. W. Hutchinson and Z. Suo

e e e o} e e m
A
H —
—...F—.c_—> i
% 4
01 o1 KG/KT
B=a 1 u=08
a=0
u=04
SRS, JHOR VU pamr-—r—- S

Fig. 76. Location of trapped crack in a compliant sandwich layer.

compared to K7, (8.3) reveals the existence of a straight, mode I crack path
within the layer. The condition for K;; = 0 from (8.3) gives the relation
between the location of the crack, ¢/h, and y* as

o(c/h, a, B) = ~yp~. (8.8)

Since ¢ vanishes when the elastic mismatch vanishes, there can be no
straight crack paths within the layer unless ™ = 0 under this circumstance.
A plot of the solution to (8.8) is shown in Fig. 76 for several levels of
mismatch, all with 8 = a/4. When there is significant mismatch, a mode ]
path well within the layer can exist for |Kj]| as large as 10% of Ki°. Such
paths exist whether the layer is compliant or stiff, but generally a straight crack
in a stiff layer will be configurationally unstable, as will now be discussed.

C. CONFIGURATIONAL STABILITY OF A STRAIGHT CRACK
WITHIN THE LAYER

Given the existence of a straight mode I path within the layer, the issue
now addressed is whether the path will be insensitive to small perturbations,
returning to the straight trajectory, or will be deflected into the interface or
possibly into a wavy morphology. Consider a loading with K} = 0 sach
that the center line through the layer is a mode I crack trajectory. Two
results are presented that indicate whether or not the centerline path is
configurationally stable.

First, suppose at the start of propagation the crack lies off the centerline
(i.e., ¢/h # 1/2 in Fig. 74a). From (8.3), with K|} = 0,

Ky = [(1 = a)/(1 — a)]"?sin ¢ K. (8.9)
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The offset crack will kink roward the centerline if K, > 0 when ¢//1 > 1/2,
and if K}; < 0 when ¢//i < 1/2. The function ¢ given by (8.4) is odd with
respect to the centerline at ¢/h = 1/2. For a compliant layver (¢ > 0) with
B = «/4, o is positive when ¢/h > 1/2, implving by (8.9) that the crack will
kink toward the centerline. By contrast, when the laver is stiff (a < 0), o is
negative when ¢/h > 1/2 and the crack will kink away from the centerline.
A compliant layer with §# = 0 has a small negative ¢ when ¢/h > 1/2 and
would also cause the offset crack to kink away from the centerline. This
particular test of configurational stability requires both « and § be positive.
This same test has been used in Section I11.B.1.b for the double cantilever
beam, and in Section V.C.2.a for substrate spalling driven by residual
tension in the rilm.

Another insight is provided by the condition for stability of a straight,
mode 1 crack path to small perturbations derived by Cotterell and Rice
(1980). Their necessary condition for straight cracking is 7 < 0, where T is
the second-order term in the crack tip expansion (2.1). Fleck er al. (1991)
have solved for T for the crack problem of Fig. 74a. For the centerline
crack (c/h = 1/2) under K7 = 0, they give

T=[(-a)/l + a)]T” + og + c1(a, B)KTh™2, (8.10)

Here, T™ is the T-stress for the homogeneous specimen in the absence of the
layer, gy is the residual stress in the layer acting parallel to the centerline,
and ¢ is tabulated by Fleck er al. and presented here in Fig. 77. Residual
compression parallel to the crack plane contributes to stability, as does a
compliant mismatch of the layer relative to the rest of the specimen through
the last term in (8.10). The last term in (8.10) is destablizing when the film
is stiff. Note that the residual stress gg has no effect on the existence of a
mode 1 path in the layer, just on its stability.

When there is significant elastic mismatch, the first term in (8.10) will
usually be insignificant compared to the third term, since 7% is typically on
the order of K;°L™'"?, where L is a length characterizing an overall dimen-
sion of the specimen, which is assumed to be large compared to 4. When
this is the case, the T-stress at fracture is

T=ag + (1 +a&)/(-a)K.h"2, 8.11)

where, by (8.6), K, is the intensity toughness of the layer material. The
requirement 7 < 0 will always be met for a compliant layer supporting a
compressive (or zero) residual stress. When the residual stress is tensile, the
sign of T depends on which of the preceding terms is larger. Note that the
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Fic. 77. Coefficient ¢, in (8.10).

second term in (8.11), which is always negative for a compliant layer,
increases in magnitude as the layer thickness diminishes.

A number of examples of sandwich systems that have been reported to
exhibit straight in-layer cracking are discussed by Fleck er a/. (1991), and
two of these will be remarked on in what follows. To emphasize the
significance of this effect, one can point to the symmetrically loaded,
double cantilever beam specimen, which is notoriously unstable in the
absence of a layer due to the fact that 7% > 0. Because of the stabilizing
influence of a thin compliant layer, the specimen can be used successfully to
measure the toughness of a material in a sandwich layer.

D. INTERFACE OR IN-LAYER CRACKING?

Two sets of toughness data taken using sandwich specimens are shown in
Fig. 78. Indicated for each data point is whether the crack propagated-along
the interface or within the interior of the layer. Thouless’s (1990b) data, for
a brittle wax layer joining silica glass, is presented as a function of the
applied phase angle of loading . Only for y* = 0did the crack propagate
within the brittle wax layer. The toughness of the wax was about one half
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Fic. 78. a) Data of Thouless (1990b) for brittle wax layer sandwiched between glass
substrates. b) Data of Wang and Suo (1990) for an epoxy layer between steel substrates.

that of the interface for near-mode-1 fracture. The data of Wang and Suo
(1990) for an epoxy adhesive layer joining two halves of a steel Brazil nut
shows instances of in-layer propagation for |{|-values as large as about 10°.
Moreover, the epoxy is significantly tougher than the interface at low values
of ¢, and the in-layer path involves substantially higher energy dissipation
and applied load than the interface path. Nevertheless, a number of speci-
mens did exhibit in-layer propagation. This preference for a high energy
path over a low energy path in close proximity highlights the importance of
understanding the mechanics of crack path selection. It remains an open
question as to why a path down the interface was not selected, especially




180 J. W. Hutchinson and Z. Suo

since Wang and Suo started their cracks on the interface and observed a
small amount of interface crack growth prior to the crack kinking into the
interior of the layer. Condition (2.65) for kinking out of the interface,
including the influence of the n-contribution, does not appear to be satisfied.
This is the feature of the behavior that remains to be explained.

Both sandwich systems in Fig. 78 have a highly compliant layer, and both
systems have a tensile residual stress gy in the layer. But in each case the second
term in (8.11) is at least twice as large in magnitude as oy (¢f. Fleck er al.,
1991, for complete details). Thus, the mode I specimens have a distinctly
negative 7-stress, and straight cracking within the layer is consistent with the
stability theory. By contrast, the plexiglass/epoxy sandwich system of Fig. 9
has relatively small elastic mismatch and a positive 7-stress under mode 1
loading. For this system, the crack always followed one of the two interfaces.

For values of |i¢™| outside the range of possible trapping of the crack
within the layer (e.g., lw™| greater than 0° to 10°, deperding on the
mismatch), the crack will be driven toward one interface or the other—
toward the lower interface if ™ > 0 and toward the upper if ¥~ < 0. If
material #1 is sufficiently tough to resist any attempts for the interface
crack to kink into it, the crack will follow the interface and the test will
generate the interface toughness according to (8.7). This is the case for both
sets of test data presented in Fig. 78, other than those data points mentioned
in the preceding. Various micro-morphologies of interface fracture have
been observed, some of which have been discussed by Evans et al. (1989).
If the interface toughness is low compared with that of both materials #!
and #2, then the crack will tend to follow the interface fairly cleanly. If,
however, the interface toughness is comparable to that of the layer material,
then the interface crack will interact with flaws in the layer adjacent to the
interface, and nucleate microcracks. The effect of the mixed mode loading
is to grow these microcracks back towards the interface. The resulting
fracture surface will be covered with tiny chunks of the layer material.
Additional discussion of the micro-morphology of interface fracture is
given by Chai (1988), Wang and Suo (1990), and by several authors in the
volume on metal-ceramic interfaces (Rihle et al., 1990).

E. ALTERNATING MoRrRPHOLOGY (Fig. 74c)

In the alternating mode of cracking of Fig. 74c, the crack switches back
and forth between interfaces with a fairly regular interval, which is typically
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several times the laver thickness. The mode has been reporied in matrix
layers between plies of a composite when the loading is nominally mode 1,
and it has been fully documented for mode I loading of an aluminum.
epoxy/aluminum sandwich specimen by Chai (1987). Chai used a heat
setting epoxy, which gives rise to a relatively high residual tensile stress in
the layer (og = 60 MPa), which is more than twice the magnitude of the
second term in the 7-stress in (8.11) (¢f. Fleck er al., 1991). Thus, Chai’s
system has a strongly positive 7T-stress and is not expected to display straight
cracking within the layer.

Akisanya and Fleck (1990) have carried out a quantitative analysis of the
alternating mode of cracking with specific attention to the aluminum/
epoxy system. Central to the phenomenon is the variation in the proportion
of mode 2 to mode 1 of the interface crack as it propagates from the point
where it first joins the interface in any given cycle, i.e., at ¢ = 0 in Fig. 79.
The trends of the variation in y found by Akisanya and Fleck are sketched
in Fig. 79, where y is defined by (2.45) with/ = A. When g = 0, y rapidly
approaches the limiting value given by (3.38) with K; = Kj] = 0, i.e.,
v = w. (For the aluminum/epoxy sandwich, o = 0.93, = 0.22, ¢ =
~0.67 and w = —15°.) However, when og VA/K[" is on the order of unity,
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FiG. 79. Sketch of trends of phase of loading at interface crack tip for various levels of
residual tension oy in the layer. The remote loading is mode |.
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which is the case for the Chai specimen, the interface crack starts with a
large component of mode 2, which then diminishes to the value v = w as
¢/h increases. The large negative mode 2 component forces the crack to
remain in the interface, since it cannot penetrate the aluminum. Only when
¢/h has increased to the point where the magnitude of y is sufficiently low
does kinking down into the laver become possible. With the aid of the
kinking analysis of Section I1.C.5, the value of ¢// was determined at which
a mode I kink crack is possible. For the aluminum/epoxy system of Chai,
Akisanya and Fleck found that the kinking condition is met when c¢/k
reaches a value of about 2, in agreement with the intervals observed by Chai.

F. TuNNELING CRACKS

An example illustrating the ability of a crack in a brittle adhesive layer to
tunnel through the layer was given in Section 1I1.A.1. If the layer material
is sufficiently less tough that the interface and the adjoining material,
cracking will be confined to the layer as depicted in Fig. 16. Steady-state
tunneling results are useful because they provide fail-safe limits on stress
levels (or on layer thicknesses) such that extensive cracking can be avoided.
The particular example of Section III.A.1 reveals that an initial crack-like
flaw whose greatest dimension is equal to the layer thickness (e.g., a penny-
shaped crack) will initiate growth at a stress that is only about 10% higher
than the steady-state tunneling stress. For many systems where the flaw size
is on the order of the layer thickness, the tunneling results should provide
realistic upper limits. When the flaw size is much smaller, the stress to
initiate crack growth is much higher than that predicted by the steady-state
tunneling limit, and the transient tunneling process is then highly unstable.

Several steady-state tunneling results for layers are presented in this
section. The results and their potential applications have a close resemblance
to the results for thin-film cracking in Section V.B.

1. Isolated Tunneling Crack

As previously emphasized, the energy released, hG,,, per unit length of
steady-state propagation of a tunneling crack is precisely the energy released
by a plane strain crack extended across the layer. Calculations have been
performed for G, by Ho and Suo (1990) for finite thickness sandwiches, as
specified in the insert in Fig. 80. In Fig. 80, ¢ denotes the uniform tensile
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Fic. 80. Steady-state energy release rate for isolated tunneling crack. The crack extends
from interface to interface, and is propagating in the direction perpendicular to the cross-
section shown.

stress within the central layer prior to introduction of the crack. That stress
may be due to a load applied to the sandwich or it may be a self-equilibrated
residual stress. Curves of the nondimensional G, are shown as a function
of the elastic mismatch parameter o with f§ = «/4 for various values of
layer thickness to total thickness, h/w. As long as the central layer is not too
stiff compared to the adjoining layers, the results for A/w = 0.1 are close to
the limiting case #/w = 0. For example, for a = 0, the normalized G,; is
0.788 for n/w = 0.1 and 0.785 for n/w = 0. Observe that a relatively com-
pliant substrate (i.e., small E, and/or w/h) provides less constraint, inducing
higher driving force. It is likely, for the same reason, that higher driving
force will be induced by crack-induced plasticity in the substrates, by inter-
face debonding, or by any other source of constraint loss. These effects
have been noted in thin film channeling by Hu and Evans (1989).

2. Multiple Tunneling Cracks

The approach to multiple cracking pursued here is identical to that
presented in Section V.B.3 for thin films under residual tension. The reader
is referred to that section for a more complete discussion of the derivations
underlying the results. Here, consideration will be limited to a layer of thick-
ness h sandwiched between two infinitely thick blocks. Elastic mismatch
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between the laver and the adjoining blocks is neglected (o = f = 0). The
stress in the iaver in the absence of the cracks is g, which may be due to
applied load or a residual stress.

First, consider an infinite set of cracks periodically spaced a distance
apart as in Fig. 81. If these cracks are equally extended in the tunneling
direction,

EGSS

52 = f/L). (8.12)

The function f(x), which can be evaluated using results from Tada et al.
(1985), is plotted in Fig. 81. For #/L — 0, f = 0.785 and (8.12) reduces
to (3.1).

Next, consider the situation in Fig. 82 where one set of cracks spaced a
distance 2L apart has already tunneled across the layer, and where a second
set bisecting the first set is in the process of tunneling across the layer. The
steady-state energy release rate for the cracks in the process of tunneling is

EG,

—32 = Y (h/L) ~ fGH/L). (8.13)

Imagine a process in which ¢ is monotonically increased, as in application
of an overall load or stressing due to temperature change with thermal
expansion mismatch. Under the assumption that new cracks will be
nucleated half-way between cracks that have already formed and tunneled,
the preceding equation gives the relation between ¢ and the crack spacing
h/L. With G, identified with the mode I toughness of the layer material
I., (8.13) provides the desired relationship, which is plotted in Fig. 82. The

" threshold corresponds to the lowest stress at which steady-state tunneling
can occur, i.e., for A/L = 0,

olh/(ET)])V? = 1.128. (8.14)

The effect of elastic mismatch on this threshold level can be determined
using the results for the isolated tunneling crack.

3. Lateral Tunneling of a Kinked Crack

Tunneling appears to be a prevalent mode of cracking in layered
materials. When the brittle layer is thin and the flaw size is comparable to
the layer thickness, the cracks can be readily nucleated. A variety of
applications of these ideas can be found in Ho and Suo (1990) and Ye and
Suo (1990). Here, we give one more example to show the versatility.
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F1G. 83. Spread of a local kink by tunneling. Top left: 3-D local kink crack; top right:
lateral spreading of kink crack by tunneling; bottom: plane strain problem for kink crack.

Because it has relevance to the ability of an interface crack to nucleate a
kink into the adjoining layer, we mention in passing application of the
tunneling concept to crack kinking. Suppose the parent interface crack
depicted in Fig. 83 encounters a local, three-dimensional flaw that is capable
of nucleating kinking. Consider the process in which the kinked segment of
crack ‘‘tunnels’’ laterally along the interface crack front. Formally, this
tunneling process can be treated as a steady-state process. The average
energy release rate at the laterally spreading crack front can be evaluated
using the energy released in the plane strain problem, just as in the previous
examples. To simplify the discussion, assume # = 0 and 7 = 0, where 7 is
given by (2.63). Since the energy release rate for the plane strain problem
for a small kink is independent of kink crack length (¢f. Section II.C.5), it
follows that the average energy release rate fur lateral tunneling along the
interface crack front is equal/ to the plane strain energy release rate.
Consequently, there is no barrier to the lateral spread of a locally nucleated
kink. This observation may help to explain why crack kinking often appears
to occur simultaneously along a more-or-less straight segment of crack front.
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Crazing of laminates

Jean LEMAITRE **, Frederick A. LECKIE * and Doy SHERMAN*

ABSTRACT. — The main features of the behavior of a brttle-ductile tvpe of Jumunies are derned trom a
one-dimensional studv which emphasizes the mechanism of craching-debonding. The unaisas v based upon a
shear lag model and the experiments are performed on an alunmina-graphite exposy lamnate The sequence of
cracking-debondings giving rise to crazes 15 pointed out with a hmiting value of the crack spacing due to g
debonding length found to be of the samc order of magnitude as the thickness of the lavers. The reducuon of
stiffness due 10 crazes is wiso valculated, measured and used 1o find the homogenized behavior of the liminae
as an elastic damaged material.

1. Introduction

The laminates considered in this study are made of alternative layers of brittle and
ductile thin sheets. This system is a compromise which benefits from the high strength
of brittle materials such as ceramics but avoids brittle failure by providing toughness
[Evans, 1990]. [Lange, Marshall & Folsom. 1990]. For high temperature use laminates
consisting of alumina and Inconel bonded by a diffusion process could conceivably result
in high strength tough materials with good creep resistance properties. It is not difficult
to visualize other combinations which would provide the properties dictated by different
design requirements. It is likely that a wide range of properties can be predicted by a
generic mechanics which describes the underlying mechanisms and the purpose of this
study is to understand and model the mechanisms of failure by cracking and debonding
as a function of the laminate parameters. As a consequence. several simplified hypotheses
are introduced to obtain analytical results which have to be considered as qualitative. In
particular, the sequence of debonding and cracking. the length of debonding. the limat
of the crack spacing, the reduction of stiffness may be described using the one-dimensional
problem described in this study. The crack growth in two dimensions is studied in a
later report.

Many investigators have used shear lag models to study the transverse matrix cracking
in cross-ply laminates [Garrett & Bailey. 1977]. [Parvizi & Bailey. 1978]. [Bailey. Curus
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& Parvizi. 1979 based on the carly work of [Coa. 1952] and on a deternunisuic locauon
of the cracks. Latter on several works appear introducing statistios 1 the location of the
cracks either by u Weibull strength distribution [Manders er of.. 1983]. [Fukunaga ¢r ol
1984] or by a distribution of inital flaw sizes (Wang & Crossmun. 19%6] or by .
probability densits function ussociated with the transverse cracking {Laws & Dhoruk.
1988]. The present work mainly emphasizes the effects of debonding. general order of
magnitude of debonding length and linuting crack spucing and some pructical consider-
ations helpful in the design of laminates.

2. Basic one-dimensional picblem

The debond lengths and cracking spacing are governed by the state of stress in the
interface and in the brittle layer. To determine the crack spacing let us consider the one-
dimensional case of two layers for which B brittle and D ductile. The portion of the
laminate between two adjacent cracks is shown in Figure 1.

[ 3 xs
) 3
—— - - -‘-o—ui— - —f
- r T ——— Y e o] _f B hs x4 B
— T - T x = S ——— ® yos
D ) ho cr , Uy 9::
| L .
Fig. 1. = Lamnate and its basic cell.
The geometrical and material properties used in this work are the following.
Brittle Ductile
matertal material Interface
Thickness. . ............. . ... ... .... Yhy 2hp 0
Length. . ... ... . .. ... . . ... ... ... 2L 2L 2L
Linear elasticiy:
Youngsmodulus.. . ... .. .. .. . ... .. Ey E, G; shear modulus
Brittle faifure or debonding: .
Strain energy density release rate. . . . . . .. .. Y? - A
Perfect plasticity:
Yickdstress.. .. .. ... ... ..., a®

The laminate is supposed to be free of any initial residual stresses.
Three convenient groups of parameters are defined:

Ephy+Ep/
E,=~—’—’-z“———[i“—’D suchthat o, =E, ¢,.
Iy + Iy
2hphp B EQ\! 2 . .
h:(~-15c—;°—El‘—»E) which 1s of the order of magnitude of the laver thickness 2 /.
\ By
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~ . RN
k= Gihy By ) which is of the order of unity.
LE, hpEp

H

The loading consists of a farficld tensie stress o, The stresses o,

material. o®; in the ductile material and o), in the interfuce max
functions of the coordinate v, using the socalled Shear Lag Theory
basis of three hypothesis which are now discussed.

in the brittde
be Jdetermined as
developed on the

H1 KINEMATIC HYPOTHESIS

The displacement «; in B and D is linear in x; for — /<y, < =iy Let us call:

cu®
B,.. y— B P | L - 1
W )=u, (X, v =gl ey =L
X,
~.,D
cu
Dy y= sy = D _. 1
Wy =u (x Xy = — ). g, = —1.
cxy

W (hp + x3)+ 15 thy — x3)

uy(x;. x;)= T h
s /p

H2 APPROXIMATION

The displacement u; does not depend upon x,. This allows us to calculate the shear
strain at the interface

2 -3 8_,D
.= 1( Cu, LS\ 1wy —uy
' Xy fx 2hg+h
3 b § “« /g 4]
and the shear stress ¢, from the law of elasticity o);=2G;¢|, from which

("(rj”fﬁ\'1 =(Gj/(hg+ hp) (€7, —€P)).

H23 ONE DIMENSIONAL PROBLEM

The stresses induced by the mismatch of the contractions of the two lavers are neglected

so that the only non-stress component is ot o' P,

This aliows us to replace the strains by the stresses through the law of elasticity

n D
Bo=90n D =90
‘11 nTE >

B D
i D
dcuw Gi Ci1 _ O5n

d\, hnth EB ED
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This is the first stress equation for the three unknowns: o' ,. o%,. o?,. The others are
calculated using the equilibrium conditions (Fig. 2).

K .
B 8 d4os
{3 ) i] e T S 411
o= |7 TS T ra=s o X4
o > dor®
Lot [ = o 35 9=
dxs
ox:,

Fig. 2. — Equilibrium of the lavers.

They involve integrals of stresses over the thickness but since u, is linear with x,. g,,
and o, are also linear so that

2hy o
J. Oy, {(x;)dxy;=2 hgof,. J 6, {(x3)dxy=2hya?,.

0 —-2hp

From consideration of equilibrium of each of the layers:

do?,
2/29-—?—1—’“’0'13’—0.
A%
do? i
21, %% ot =0
b |

whilst overall equilibrium of the system in the x direction gives
ot hg+ 0 hy=0, (hg+ip).

An equation in o}, may be obtained from the differential equation in o), in which
expressions for o, and éo’,/éx, are taken from the equilibrium equations to give

do‘l‘l - G?l + EB Cx —
dx} b» E_, B

where the parameters E, and » were defined earlier.
The solution of the differential equation is:

X kY E
o? =A ex (l—‘)-ﬂ\ ex (—- L'~)+ “o,.
11 1 $Xp h 2€Xp h E

The boundary conditions:

¥y =L = of, = 0 because of the two end cracks.

x,=0—a';=0fromthes ‘mmetry condition
1 13 Y
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give the solution

c'“'—*c, Asmhk\'l b h
i coshL A

= Eﬂ(l coshy, A

OUTE, costh)

h
o B :
o, =0, + 2, -c%))
B

293

where k is the parameter defined in the matrix. The stress distributions are plotted in

the dimensionless form shown in Figure 3.

[

i

i)

([

Fig. 3. — Stress distribution in the basic laminate cell.
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These curves give the classical results of a shear lag analysis that is the basis of the

mechanism of debonding and cracking of the laminate,
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It is the length x¥ of the edge effect in which the stresses strongly increase or decrease
is very small xf L~ 10%.

The stress gradient is very large in that region which models the stress singularity
which occur in the cxact solution.

3. Mechanism of damage by crazing

3. 1. DESCRIPTION OF THE DEBONDING.CRACKING AMECHANISM

Consider a monotonic increase of the applied stress ¢, from the curves of Figure 3,
and assuming at first that no plastic vielding occurs in the ductile layer. the first event
to occur is a debonding of the interface at the two edges in the vicinity of x; = = L. The
condition for debonding is Y'2 YL

From damage mechanics. the strain energy release rate density Y is the variable
associated with the damage variable D defined as the surface density of debonding. If
linear elasticity is coupled to damage then Y is derived from the elastic strain energy
density w, as [Lemaitre & Chaboche. 1990]

éw, _ o? 1?
Y=- —f=— inpuretension and Y= - inpureshear.
éD 2E 2G

The length of debonding /, is defined by the set of x, where

14y i i i Ei i\, ,
G, 2Y, or Cy3. 2 Y.} =1 forconvenience.
E; xS BTN f s ‘
] 1

/

This criterion assumes that the length at which the debonding stops is given by a static
calculation based upon the elastic stress distribution some what similar to that used to
define the process zone size at the front of a crack in small scale veiding. Kinctic and
dynamic effects. blunting at the tip of the debonding zone are not 1aken into account.

Taking the expression of ¢!, as a function of x, gives

‘ (L“I,) 1 coshL A
sinh{ ——2 J= £ ———— |
b J o k

7

The approximation for L'h> 1 then gi s/, =hLn(k(c, ).
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Numerical applications to practical cases show that the ratio ¢, ' =210 3 Then. /,
is of the order of 4. which 1s the order of magnitude of the laver thickness 2/ Thiy s
the first important qualit.tive result shown in Figure 4./, ~2h.

1Ly Yv
L EE| L o

|

Fig. 4. = Debonding cracking mechanism.

Referring to Figure 4 we may consider that after these two debondings and with zcro
friction in the debonded zones. the effective length 10 be considered in the stress equation
is no longer L but L —/,. In particular in the brittle layer

B =0, .E!( - coshx,:h )
E cosh((L—-/) h)

¥

This result shows that to support the same applied stress o, the magnitude 6%, should
increase due to the decrease of the characteristic length from L to (L~/,). If so or for
an increase of o, its maximum value upon x,, that is for ¥, =0 may reach the condition
for brittle failure: Y®=Y2.

In pure tension: Y8=(c%,)2/2E,.

Then the brittle failure occurs when o}, =(2Ez Y?)! >=a® (for convenience} which
corresponds to the applied stress derived from the expression of o, with x; =0

¥

-1
o, = ——-cr?(l— —————l-—-—_—) .
| = cosh((L~1,)/h)

As the crack appears it induces a free edge condition at x, =0(c?, {x, =0)=0) which
produces the quasi-singularity of the shear stress in the interface and the condition for
immediate debonding (Fig. 4)

ci,:, gri — debondingfor ~/, < x</,.

3.2, SEQUENCE OF DEBONDINGS-CRACKINGS

As the external applied stress o, continues to increase. the length of the previous
debondings increases unt.. the condition of a new cracking is reached.

This sequence of debonding and cracking mechanisms repeats itself as ¢, increases
with a cell length divided by two at each new crack formation and diminished by 2/ at
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& i i !
> % [ R
et et ]
p =
Fig. 3. - Second debonding-cracking mechanism

each debonding (Fig. 5). We now calculate the condition of the second debonding-
cracking sequence.

The same formula applied either for debonding or cracking except that the length of
half the basic cell is now (L—2/,) 2.

Then the length /, of the four additional debonded regions 1s defined by

b b

sinh(anl‘ - ”)= d cosh((L-21,)2h)
* g, I\

which shows that for (L-2/)25b> 1

zzzth(kE’;);1,.
Tl

<

Then each new debonding may be considered to have approximately the same length:
Lil=i=h
The external applied stress to cause the second debonding is

¥

-1
cr,=—-—cs§’<l-— ! ) '
Eq cosh(((L—2/,).25—(, p)

Using this result it is now possible 1o extrapolate for m successive mecachaisms of
debondings-cracking inducing n cracks in the following steps where the approximation
{,=1{ has been made

Several interesting qualitative results may be observed from this sequence of the
debonding-cracking damaging process.

~ The crack spacing and the crack densitv are plotted against the aprilied stress
(Figs. 6. 7). The crack spacing and crack density are normalized by the parameter
h(h=2h) and the stress o, by the ratio E, ¢®E,. The results do not depend upon the
gometrical aspect ratio 2 1. h. Then these curves can be uscd as master curves for many
applications.

~ The number of cracks increases very rapidly with the applied stress ¢, and the
crack spacing decreases very rapidly and approaches saturation. These observations have
been pointed out in several experimental studies {Crossman er al.. 1980]. The practical
limit reached in Figure 6 is 2L (n— 1A= 3 which corresponds to a crack spacing limit
of the order of 2b. 2L:(n—1)=3 b which is about twice the thickness of the layer when
the layers are of the same size. Otherwise 2L (n— 1) =3(2 gy, E Ep G{E, ' ¢ which is
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Apphed
Stress
Cumulatuive
Mechanism P Eq debonding Crach Cruch
number " E,o* length densiny spacimg
(] 0 i 2L 2L

. L=/ P
f- cosh—-m—) o
1 [ 4/ 2L L

i hL—-ll‘)" - s L
(\‘OS ) 12/ oL 2

I

i ’ hZL-(S.Z"—-t)I“" -1 2 2
~{cosh——" . ° - I
m ( 2" h ) H(2" -1y 2L g
2L-3a=-N\1 ”n 2L
I ~{ cosh ———n —
or cxpressed as — tn—Nhb =21 2L a=1
Function of the number of
cracks
19.99 .08
3 _Lc_-r
E s¢
8.0 .~ —— pras
o
:| 6.00] o
E )..c
N\ 3 P4
N‘ a0 2o
E ——— ‘-E
E .2
2.0
X yrrv—r v v y o.00} v vy v +
... g 19.00 15.08 2. 9.0 .80 10.09 15.08 ».m
EsSig.~ E.Sig! E.S. ~ E.S!
Fig. 6. — Crack spacing. Fig. 7. = Crack denssty,

in accordance with experimental results of [Highsmith & Reifsnider. 1982] and [Wang.
1984]. Notice that the theories which to not take debonding into account cannot predict
this limiting crack spacing.

3.3, EXPERIMENTAL STUDY

Experiments have been performed on a laminate composite made of two brittle layers
of Aluniina Al,O; bounded by the epoxy of a “ductile” layer of Carbon fiber-epoxy
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composite having the fibers in the longitudinal direction of the tensile specimen shown
in Figure 8 which also gives the properties of the two materials.

Alumina Carbon fibers-expoxy
2 hg=0.635mm 2y =037mm
Eg=303.000 MPa Ep=115.000 MPa
o= 193MPa o,=1.710 MPa

Interface (epoxy)

Gi=2.000 MPa
T =30MPu
3
—_— 4
o [ T ]
1 t
53 .
J | —
38 70 8| A
v S
. A-A SRMASAMAG
L —
27 —

Fig. 8. — One-dimensional laminate specimen.

The processing consists in a hot pressing of the ceramic and carbon fibers epoxy plies
at a pressure of 0.350 MPa and a temperature of 135°C for 90 min. Due to the thermal
expansion mismatch between the two materials, residual stresses develop during cooling.
They have not been taken into considera:ion in the present study but a method to
iniroduce such initial residual stresses in the analysis is developed in [L & D, 1988].

A monotonic loading is applied and the sequence of cracking is recorded.

The formation of cracks does not occur exactly at mid distance of two existing cracks
{nature is not as perfect as the equation') but appears randomly along the specimen as
shown by the sequences of cracking in Figure 9 which shows also the corresponding
stress-strain curve and evolution of the number of cracks. However the final pattern is

close to the one predicted. Notice that some crack branching occur which are not
considered in the theory.

The elementary debonding length when a crack appears is by observation 0.5</<2mm.

The prediction is
I,;h;?.\/h,, hez1mm.
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{a)
‘n
30,
200,90+
: /
~ 150,901
g 20.
~ »
o 100,00
[ ] H
[ ] H
5 10.
7
~ 1
o
e.10 9.5 s ° 00 200 o0 MR
Stratn (%)

th «

Fig. 9. = Crazes on laminates (o). corresponding strass-strain curve thh and number of cracks ey

At saturation. the crack densitv. the crack spacing and the cumulative debonding
estimated as average values of measurements from 3 experiments arc:
— crack density: =0.5mm™":

— crack spacing average: ~2mm.
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The corresponding predicted values calculated with h=1 are respectively 0.33mm ™!

and 3mm. The correlation is satisfactory enough if we consider that the residual stresses

induced by the processing of the Luminate are not taken inte account in the theory.

4. Limit load by plasticity in the ductile laver

Crazes continue to develop on the brittle laver until the steady state is reached und
the ductile layer may vield when the stress 62, is equal to the yield stress o”. Then from
the formulas of Section 2

h !

D _ B . .D = D B

6}, =G, + —0, =0, or c,\—o,(l-*-*) .
i hp

For that value of the applied stress the laminate behaves as a perfectly plastic material
uniil damage develops in the ductile layer to reach ultimate fracture.

S. Reduction of stiffness
An important effect of crazing is the reduction of the stiffness of the laminate. The

stiffness reduction is not due to the cracks but to the debondings which roughly speaking
unload the brittle layer over a length 2/ at each crack (Fig. 10).

i
B | ‘ii 2he
‘ ‘1.
 Npm——— > —
D zh-

e

q Nn-1

L okl bl gL
e

Fig. 10. — Stiffness of 4 damaged laminate.

Consider one cell whose length is the crack spacing 2L/{n— 1) (n being the number of
cracks in a length 2L) containing one crack at x,=0. The stiffness of that cell is the
stiffness of the ductile layer over a length 2L/(n— 1) in parallel with two suiffnesses of
the brittle layer over the lengths ~(L/{(n~1))<x, < —{and /<x, <Li{n—1).

If E is the elastic modulus of the cell:

2 2 -1 2 -1 2 N1
By to g, 2hs ) ""(Enﬂ> 2(‘?"_-*”‘“*"“’\ :
(2Lin—1)~2! QLin—1))-21 2/ 2Lin—1)/

E= =
L+ {/(n—1)/LNEg hp/Ep hp)
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For many cells in senies. E 15 also the clastic modulus of the luminate.

A practical order of magnitude for the modulus is E=E, 2 which is reported b

[Hashin, 1986} and [Highsnuth e/ «l.. 1982). This value ts obtained when considering the
steady-state limiting case

“:—%7» =2 with hz2hz! E

=1 £ v then F= 2t

together with ~2°8 = | B
php

The evolution of the damaged elastic moduius E as a function of the crack density is
compared with experiments of section 3.3 in Figure !l and comparison is quite good.

E
T-—E
1

— E:?crimcnh

0.5}  Prediction
le1

0 o1 a2 o3 0%

Fig. 11, ~ Damaged clastic modulus.

6. Homogenization

Having the expression of the elastic modulus of the laminate as a function of the
number of cracks (which is a known function of the applied stress o). it is straightfor-
ward to derive the constitutive equation of the equivalent continuous material having its
clasticity coupled with damage (L & C. 1990].

The one-dimensional continuous damage variable of the laminate is defined by

E 1

D=1~ — :
E, 1+(Li(n~ 1)(EphpEqghg)
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The surae approvimations as i Section 3 show that the imng value of D of the
order of 0.5 which corresponds to the brittle fayer fully dumaged with o ducuie ker
undamaged.

The one-dimensionu! law of elasticity of the homogenized Laminate 1
v, =0 E, (~Dy

This law can be used for structural calculations in engmeering apphcatuons The overall
behavior resuluny from the elasticity. cracking of the britde luver debonding of the
interface and vielding of the ducule laver i represented in figure 12, 1t has o be compared
witch the experimental stress-strrain curve depicted i Figure 9 of section 3.3 The main
difference is the irreversible strains existing in the experiment that the model does not
take into account before the vielding of the ductile Luver. They are due to mitial remdual
stresses [L & D. 198§].

W e gt
» -1
0= = 07 (1+13)
v F-Es
2
En

Y

o}

Fig. 12. — Schematic tensiic cunve as modetled.

APPLICATION TO A PURE BENDING PROBLEM

As an exercisc, lel us derive the pure bending eqution of a damaged beam by a fixed
value of the damage D which reduces the elasticity modulus to E, {1 - D} in tension
but does not affect the compression behavior because of the crack closure phenomenon.
Then the constitutive equation is

(8]

———— if az0
E,(1-D)

i a<0
E
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This is a classical beam problem soived with Bernoulli’s hypothesis. Assuming abo a

rectangular cross-section with the notanons of Figure |

A
£,,= ~ —.
R

If R is the curvature and » the beam deflection

R=% L
dx;

The equilibrium of the forces in the x, direction gives the position of the neutral axis

in the thickness 21 of the beam defined by — A4, <xy<h, with A, +h. =21

Ay !
J- O,,{x3)dx; =0 ) - -

where the edge 4, is in tension and 4, in compression. The equilibrium of moments gives
h2
0y, (X3)x;dx; +M=0, d?yjdx}=M/E_ 1A, where 1 is the

the beam equation: J-
_h,
1.20

.82

Deite

1.2

Fig. 13. - Damaging correction function for pure bending of beams.
bending inertia of the beam section and A the damage function represented in Figure 13.
—)]

1- /T-D\s 1-_/
A,D,=4[(I—D)(———-——) +(|— —_—
D D

It is also possible to consider the coupled problem of damage induced by the bending
but only by means of a numerical analysis. A closed form solution could not be found.
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